The inner planets are usually rocky because the gravitational pull is stronger closer to the star or in this case the sun. The dust and rocky particles that are left over after a super nova or in a nebula will tend to orbit closer to a proto-star when a solar system is in its early days. In our solar system these planets are Mercury, Venus, Earth and Mars. Gases are less dense and will be less affected by the pull of gravity because rocky particles have more mass. The outer planets are gas giants formed from clouds of gas that would be further out in the spinning disk around a proto-star.
Answer:
a) Wavelength of the ultrasound wave = 0.0143 m <<< 3.5m, hence its ability is not limited by the ultrasound's wavelength.
b) Minimum time difference between the oscillations = Period of oscillation = 0.00952 ms
Explanation:
The frequency of the ultrasound wave = 105 KHz = 105000 Hz. The speed of ultrasound waves in water ≈ 1500 m/s. Wavelength = ?
v = fλ
λ = v/f = 1500/105000 = 0.0143 m <<< 3.5m
This value, 0.0143m is way less than the 3.5m presented in the question, hence, this ability is not limited by the ultrasound's wavelength.
b) Minimum time difference between the oscillations = The period of oscillation = 1/f = 1/105000 = 0.00000952s = 0.00952 ms
Hope this helps!
The ratio of the intensity between light intensity that emerges from the last filter and unpolarized light of intensity, I₀ is It/I₀ = 0.2925
To answer the question, we need to know what polarization of light is.
<h3>What is polarization of light?</h3>
This is when the electric field vector of light is oscillating in one plane.
- Now for light of intensity I' which is initially unpolarized, its intensity after polarization is I = 1/2I'.
- Also, for light initially polarized, its intensity after polarization is I"' = I"cos²Ф where Ф is the angle between the initial direction and the direction of polarization.
<h3>Intensity of light through each polarized filter</h3>
Given that we have 7 polarizing filters, each rotated 17° cw with respect to the previous filter.
So, since the light is initially unpolarized,
- The intensity through the first polarizing filter is I₁ = 1/2I₀ where I₀ is the initial intensity.
- The intensity through the second polarizing filter is I₂ = I₁cos²17°= 1/2I₀cos²17°
- The intensity through the third polarizing filter is I₃ = I₂cos²17° = 1/2I₀cos⁴17°
- The intensity through the fourth polarizing filter is I₄ = I₃cos²17° = 1/2I₀cos⁶17°
- The intensity through the fifth polarizing filter is I₅ = I₄cos²17° = 1/2I₀cos⁸17°
- The intensity through the sixth polarizing filter is I₆ = I₅cos²17° = 1/2I₀cos¹⁰17°
- The intensity through the seventh polarizing filter is I₇ = I₆cos²17° = 1/2I₀cos¹²17°.
<h3>The ratio of the intensity between light intensity that emerges from the last filter and unpolarized light of intensity</h3>
Since I₇ is the last intensity I₇ = It = 1/2I₀cos¹²17°.
So, It/I₀ = 1/2cos¹²17°
= 1/2(0.9563)¹²
= 1/2 × 0.5850
= 0.2925
So, the ratio of the intensity between light intensity that emerges from the last filter and unpolarized light of intensity, I₀ is It/I₀ = 0.2925
Learn more about intensity of polarized light here:
brainly.com/question/25402491
The #1 answer would be meats and eggs. But, as a veggan, I present you with meatless protien-rich food!
1 - <u>Pea protein</u> (used in Beyond Meat, which tastes just like meat btw!)
2 - <u>Soy protein</u> such as tofu
3 - <u>Nuts</u>
4 - <u>Beans</u>! oml so many beans have MORE protien than meat!! ikr!?!?
may I have Brainliest pls =)