Answer:
Explanation:
Small-angle grain boundaries are not as effective in interfering with the slip process as are high-angle grain boundaries because there is not as much crystallographic misalignment in the grain boundary region for small-angle, and therefore not as much change in slip direction.
Low angle grain boundaries (quasi-coherent) are formed by the dislocation network positioned along the geometric plane with small tilt angle differences between successive peers that is tilt boundary made up edge dislocations therefore it may only divert the slip direction of the incoming gliding dislocation with very little frictional stresses. And on the other hand, a high angle grain boundary region because of their disordered almost liquid like structure which acts as a strong barrier against dislocation slip motion and causes actually formation of dislocations file-up against it by arresting their motion unless that the stress concentration at the leading dislocation becomes high enough to go though the barrier.
Answer:
32 miles per hour
Explanation:
if 8 miles is in 15 minutes then multiply 8 by 4 to get miles per hour.
Solution :
Given :

Operation time,
= 3000 hours per year

Operation time,
= 2000 hours per year
The density, ρ = 
The wind blows steadily. So, the K.E. = 

The power generation is the time rate of the kinetic energy which can be calculated as follows:
Power = 
Regarding that
. Then,
Power
→ Power = constant x 
Since,
is constant for both the sites and the area is the same as same winf turbine is used.
For the first site,
Power, 

For the second site,
Power, 
Answer:
il(t) = e^(-100t)
Explanation:
The current from the source when the switch is closed is the current through an equivalent load of 15 + 50║50 = 15+25 = 40 ohms. That is, it is 80/40 = 2 amperes. That current is split evenly between the two parallel 50-ohm resistors, so the initial inductor current is 2/2 = 1 ampere.
The time constant is L/R = 0.20/20 = 0.01 seconds. Then the decaying current is described by ...
il(t) = e^(-t/.01)
il(t) = e^(-100t) . . . amperes