Answer:
The capacitance is cut in half.
Explanation:
The capacitance of a plate capacitor is directly proportional to the area A of the plates and inversely proportional to the distance between the plates d. So if the distance was doubled we should expect that the capacitance would be cut in half. That can be verified by the following equation that is used to compute the capacitance in such cases:
C = (\epsilon)*(A/d)
Where \epsilon is a constant that represents the characteristics for the insulator between the plates. A is the area of the plates and d is the distance between them. When we double d we have a new capacitance, given by:
C_new = (\epsilon)*(A/2d)
C_new = (1/2)*[(\epsilon)*(A/d)]
Since C = (\epsilon)*(A/d)] we have:
C_new = (1/2)*C
Answer:
E. Kepler's second law says the planet must move fastest when it is closest, not when it is farthest away.
Explanation:
We can answer this question by using Kepler's second law of planetary motion, which states that:
"A line connecting the center of the Sun with the center of each planet sweeps out equal areas in equal intervals of time"
This means that when a planet is further away from the Sun, it will move slower (because the line is longer, so it must move slower), while when the planet is closer to the Sun, it will move faster (because the line is shorter, so it must move faster).
In the text of this problem, it is written that the planet moves at 31 km/s when is close to the star and 35 km/s when it is farthest: this is in disagreement with what we said above, therefore the correct option is
E. Kepler's second law says the planet must move fastest when it is closest, not when it is farthest away.
If the collision is inelastic, there is every possibility that the large body will drag the small stationary body along with it in the direction of the collision. Some amount of heat, light and sound energy will also be produced due to the kinetic energy of the large body. I hope the answer helps you.