Answer:
option E
Explanation:
given,
diameter = 4 mm
shutter speed = 1/1000 s
diameter of aperture = ?
shutter speed = 1/250 s
exposure time to the shutter time

N is the diameter of the aperture and t is the time of exposure
now,


inserting all the values

N₂² = 4
N₂ = 2 mm
hence , the correct answer is option E
That is force. Whenever you see the words push or pull always think of Force
I'm not completely sure, but I think it's 3.4 newtons. I hope you get it correct.
Light travels in waves AND in bundles called "photons".
It's hard to imagine something that's a wave and also a bundle.
But it turns out that light behaves like both waves and bundles.
If you design an experiment to detect waves, then it responds to light.
And if you design an experiment to detect 'bundles' or particles, then
that one also responds to light.
<span>So, if the man weight 900 newtons on Earth then that means, using F=ma, that the mass of the man is approximately 91.84 kg. This is because 900N=m(9.8m/s^2), and so it follows that 900/9.8=91.84. Using the man's found mass we then plug this into F=ma again. It follows that F=(91.84)(25.9)=2378.57N. This means that the man "weighs" 2378.57 Newtons on Jupiter, or about 2.5x as great as his weight on Earth. This makes sense, considering that 25.9/9.8 is approximately equal to 2.64.</span>