Answer:
2.25 M is the final concentration of hydroxide ions ions in the solution after the reaction has gone to completion.
Explanation:
Moles of NaOH = 
Molarity of the nitric acid solution = 0.250 M
Volume of the nitric solution = 0.150 L
Moles of nitric acid = n



According to reaction, 1 mole of nitric acid recats with 1 mole of NaOH, then 0.0375 moles of nitric acid will react with :
of NaOH
Moles of NaOH left unreacted in the solution =
= 0.375 mol - 0.0375 mol = 0.3375 mol

1 mole of sodium hydroxide gives 1 mol of sodium ions and 1 mole of hydroxide ions.
Then 0.3375 moles of NaOH will give :
of hydroxide ion
The molarity of hydroxide ion in solution ;

2.25 M is the final concentration of hydroxide ions ions in the solution after the reaction has gone to completion.
The boiling point of HF is higher than the boiling point of
, and it is higher than the boiling point of
.
<h3>What is the boiling point?</h3>
The boiling point is the temperature at which the pressure exerted by the surroundings upon a liquid is equalled by the pressure exerted by the vapour of the liquid.
has weak dispersion force attractions between its molecules, whereas liquid HF has strong ionic interactions between
and
ions.
Only London Forces are formed - Therefore more energy is required to break the intermolecular forces in HF than in the other hydrogen halides and so HF has a higher boiling point.
and
will only have intra-molecular attractions and there will be no hydrogen bonds present in them. As a result, their boiling point will be lower.
Hence, the boiling point of HF is higher than the boiling point of
, and it is higher than the boiling point of
.
Learn more about the boiling point:
brainly.com/question/25777663
#SPJ1
Answer:
Mercury responds to temperatures differently than water. When mercury is cold, the molecules bunch together, making it seem to be less liquid, and the opposite happens during heat.
Hope this helps!
Answer:
A sample of helium gas has a volume of 620mL at a temperature of 500 K. If we ... to 100 K while keeping the pressure constant, what will the new volume be?
Explanation:
Answer:
The ΔG° is 29 kJ and the reaction is favored towards reactant.
Explanation:
Based on the given information, the ΔH°rxn or enthalpy change is 41.2 kJ, the ΔS°rxn or change in entropy is 42.1 J/K or 42.1 * 10⁻³ kJ/K. The temperature given is 289 K. Now the Gibbs Free energy change can be calculated by using the formula,
ΔG° = ΔH°rxn - TΔS°rxn
= 41.2 kJ - 289 K × 42.1 × 10⁻³ kJ/K
= 41.2 kJ - 12.2 kJ
= 29 kJ
As ΔG° of the reaction is positive, therefore, the reaction is favored towards reactant.