Imagine a car crash. A car coming at a high speed has a head on collision with a car at rest. When the car makes impact, it will move the other car with it at a slower speed then it was travelling at. In this case, the velocity decreased since the car slowed down, but the mass increased since there are now two cars moving. Momentum was conserved because the change in mass accounts for the loss of velocity.
The coefficient of kinetic friction (μ) between the block and the table is 0.4.
<h3>
What is kinetic friction?</h3>
This sis the frictional force between an object in motion with the surface in contact.
μN = ff
where;
- N is normal reaction due to weight of the block
- ff is frictional force
- μ is coefficient of friction
μ = ff/N
μ = 8/20
μ = 0.4
Thus, the coefficient of kinetic friction (μ) between the block and the table is 0.4.
Learn more about coefficient of friction here: brainly.com/question/20241845
#SPJ1
charge = current x time = 0.5x 20=10Coulombs
Answer:

Explanation:
According to the law of conservation of linear momentum, the total momentum of both pucks won't be changed regardless of their interaction if no external forces are acting on the system.
Being
and
the masses of pucks a and b respectively, the initial momentum of the system is

Since b is initially at rest

After the collision and being
and
the respective velocities, the total momentum is

Both momentums are equal, thus
Solving for 


The initial kinetic energy can be found as (provided puck b is at rest)


The final kinetic energy is


The change of kinetic energy is
