The force between the molecules involved in the bond is 6. 426 *10^-11 Newton
<h3>How to determine the force</h3>
Using the formula:
F = K[q1 x q2]/D^2
where K is coulombs constant =9 *10 ^9 Nm^2/C^2.
q1 and q2 = charges = 1.60x10 -20C
d = distance between the charges = 2x10 -10 m
Substitute the values into the formula
F =
F = 
F = 
F =
Newton
Thus, the force between the molecules involved in the bond is 6. 426 *10^-11 Newton
Learn more about electrostatic force here:
brainly.com/question/8424563
#SPJ1
Answer:
This will require 266.9 of heat energy.
Explanation:
To calculate the energy required to raise the temperature of any given substance, here's what you require:The mass of the material, m The temperature change that occurs, ΔT The specific heat capacity of the material,
c
(which you can look up). This is the amount of heat required to raise 1 gram of that substance by 1°C.
Here is a source of values of
c for different substances:
Once you have all that, this is the equation:
Q=m×c×ΔT(Q is usually used to symbolize that heat required in a case like this.)For water, the value of c is 4.186g°C So, Q=750×4.186×85=266=858=266.858
Answer:
2.61 J
Explanation:
Since potential energy U = mgy where m = mass of object, g = acceleration due to gravity = 9.8 m/s² and y = height of object above the ground.
Now for the coffee mug, m= 0.422 kg and it is 0.63 m on a table, so it is 0.63 m above the ground. Thus, y = 0.63 m.
We compute U
U = mgy
= 0.422 kg × 9.8 m/s² × 0.63 m
= 2.605 J
≅ 2.61 J
So, the potential energy of the mug with respect to the floor is 2.61 J
Answer:
Waves can be measured using wavelength and frequency. ... The distance from one crest to the next is called a wavelength (λ). The number of complete wavelengths in a given unit of time is called frequency (f). As a wavelength increases in size, its frequency and energy (E) decrease.
A particle that is smaller than an atom or a cluster of particles.