Considering that Work, W, is:
W=F·d
You have: 224=F·32
So that F=7 N
Answer:
a)
346.67 N/C, downward
b)
1.3 m
Explanation:
(a)
q = magnitude of charge on the particle = 1.95 x 10⁻⁹ C
r = distance of location from the charged particle = 0.225 m
E = magnitude of electric field at the location
Magnitude of electric field at the location is given as

Inserting the values

E = 346.67 N/C
a negative charge produce electric field towards itself.
Direction : downward
(b)
E = magnitude of electric field at the location = 10.5 N/C
r = distance of location from the charged particle = ?
q = magnitude of charge on the particle = 1.95 x 10⁻⁹ C
Magnitude of electric field at the location is given as

Inserting the values

r = 1.3 m
Let us assume that rocket only runs in initial energy and not using its own to flying.
Also , let upward direction is +ve and downward direction is -ve .
Initial velocity , u = 58.8 m/s .
Acceleration due to gravity ,
.
Final velocity , v - = 0 m/s .
We know , by equation of motion .

Hence, this is the required solution .
<span> the speed of sound in air is directly proportional to the temperature of the air. The speed of sound depends on the temperature of the surrounding air, this can be represented by a speed of sound in air formula: v = 331m/s + 0.6m/s/C * T (where T is temperature)</span>
Answer:
h' = 603.08 m
Explanation:
First, we will calculate the initial velocity of the pellet on the surface of Earth by using third equation of motion:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity on the surface of earth = - 9.8 m/s² (negative sign due to upward motion)
h = height of pellet = 100 m
Vf = final velocity of pellet = 0 m/s (since, pellet will momentarily stop at highest point)
Vi = Initial Velocity of Pellet = ?
Therefore,
(2)(-9.8 m/s²)(100 m) = (0 m/s)² - Vi²
Vi = √(1960 m²/s²)
Vi = 44.27 m/s
Now, we use this equation at the surface of moon with same initial velocity:
2g'h' = Vf² - Vi²
where,
g' = acceleration due to gravity on the surface of moon = 1.625 m/s²
h' = maximum height gained by pellet on moon = ?
Therefore,
2(1.625 m/s²)h' = (44.27 m/s)² - (0 m/s)²
h' = (1960 m²/s²)/(3.25 m/s²)
<u>h' = 603.08 m</u>