a. It occures in binary systems where one of them is a whitedwarf
(a) 5.66 m/s
The flow rate of the water in the pipe is given by

where
Q is the flow rate
A is the cross-sectional area of the pipe
v is the speed of the water
Here we have

the radius of the pipe is
r = 0.260 m
So the cross-sectional area is

So we can re-arrange the equation to find the speed of the water:

(b) 0.326 m
The flow rate along the pipe is conserved, so we can write:

where we have

and where
is the cross-sectional area of the pipe at the second point.
Solving for A2,

And finally we can find the radius of the pipe at that point:

From the graph, it can be seen that the constant force that John exerted in order to move the object is 14N. Work is calculated by multiplying the force with the distance to which the object moves in parallel with the direction of the force.
Work = Force x displacement
Work = (14 N) x (8 m)
Work = 112 J
The closest value is 110J. Thus, the answer to this item is the second choice.
Answer:
If the avg speed is 10mi/h and you want to know how long it will take to run 2.5mi/h you put that as a ratio 2.5/10 which is 1/4 of an hour so it will take 15 minutes to run 2.5 miles
Explanation: