Responda:
400 g
Explicação:
Dado o seguinte:
Deixe Mass (m1) = m em t1 = 45 ° C
Massa (m2) = 200g em t2 = 15 ° C
Equilíbrio térmico (T) = 35 ° C
Usando a relação:
m1 * C * ΔT = m2 * C * ΔT
Onde m1 e m2 são as massas; C = capacidade de calor específico da água e ΔT é a mudança de temperatura
m1 * ΔT = m2 * ΔT
m * (45 ° C - 35 ° C) = 200 * (35 ° C - 15 ° C)
10 * m = 200 * 20
10 * m = 4000
m = 4000/10
m = 400g
Kinetic energy = (1/2) (mass) (speed)²
= (1/2) (1.4 kg) (22.5 m/s)²
= (0.7 kg) (506.25 m²/s² )
= 354.375 kg-m²/s² = 354.375 joules .
This is just the kinetic energy associated with a 1.4-kg glob of
mass sailing through space at 22.5 m/s. In the case of a frisbee,
it's also spinning, and there's some additional kinetic energy stored
in the spin.
What problems do you think might arise if the chromosomes did not align during metaphase?
Answer:
(3) Both extensional as well as compressional strain is produced
Explanation:
Answer: 0.999959 c
Explanation:
According to the special relativity theory, time is measured differently by two observers moving one relative another, according to the Lorentz Transform Equation, as follows:
t = t’ / t=t^'/√(1-(v)2/c2 )
where t= time for the moving observer (relative to the spacecraft, fixed on Earth) = 110 years.
t’= time for the observer at rest respect from spacecraft = 1 year
v= spacecraft constant speed
c= speed of light
Solving for v, with a six decimals precision as a multiple of c, we get:
v = 0.999959 c