The magnitude of the work done by force experience by the object is (2a²b + 3b²)J.
<h3>
Work done by the force experienced by the object</h3>
The magnitude of the work done by force experience by the object is calculated as follows;
W = f.d
where;
- F is the applied force (2xyi + 3yj), where x and y are in meters
- d is the displacement of the object = (a, b)
The work done by the force is determined from the dot product of the force and the displacement of the object.
F = (2xyi + 3yj).(a + b)
W = (2abi + 3bj).(ai + bj)
W = (2a²b + 3b²)J
Thus, the magnitude of the work done by force experience by the object is (2a²b + 3b²)J.
The complete question is below:
The particle moves from the origin to the point with coordinates (a, b) by moving first along the x-axis to (a, 0), then parallel to the y-axis.
How much work does the force do?
Learn more about work done here: brainly.com/question/8119756
Answer:
Velocity of the electron at the centre of the ring, 
Explanation:
<u>Given:</u>
- Linear charge density of the ring=

- Radius of the ring R=0.2 m
- Distance of point from the centre of the ring=x=0.2 m
Total charge of the ring

Potential due the ring at a distance x from the centre of the rings is given by

The potential difference when the electron moves from x=0.2 m to the centre of the ring is given by

Let
be the change in potential Energy given by

Change in Potential Energy of the electron will be equal to the change in kinetic Energy of the electron

So the electron will be moving with 
It should be the B
Low frequency and long wavelength
Answer:
0.78 m
Explanation:
The relationship between wavelength and frequency of a wave is given by

where
v is the speed of the wave
f is the frequency
is the wavelength
For the sound wave in this problem, we have
is the frequency
v = 344 m/s is the speed of sound in air
Substituting into the equation and re-arranging it, we find the wavelength:
