Answer:
Final temperature of the aluminum = 41.8 °C
Explanation:
We have the equation for energy
E = mcΔT
Here m = 55 g = 0.055 kg
ΔT = T - 27.5
Specific heat capacity of aluminum = 921.096 J/kg.K
E = 725 J
Substituting
E = mcΔT
725 = 0.055 x 921.096 x (T - 27.5)
T - 27.5 = 14.31
T = 41.81 ° C = 41.8 °C
Final temperature of the aluminum = 41.8 °C
The energy carried by a single photon of frequency f is given by:

where

is the Planck constant. In our problem, the frequency of the photon is

, and by using these numbers we can find the energy of the photon:
Explanation:
an object's gravitational potential energy Eg is m×g×h where:
m=mass
g=9.8m/s²
h=height relative to the closest object below it (because it cannot potentially fall through it
so Eg = 15×9.8×5=735J
Answer:
New volume of the baloon is 0.02325m^3
Explanation:
To answer this question we need to know the ideal gas law, which says:
p•V = n•R•T
p is pressure, V is volume, n is amount of substance (in moles), R is constant value and T is temperature.
Since it's stated that n and T are constant, and we know that R is a constant too, that means that p•V = constant value. Basically, that means that p1•V1 (pressure and volume before the pressure increase) equals to p2•V2 (pressure and volume after the pressure increase).
That means that:
100000 Pa • 0.0279 m^3 = 120000 Pa • V2. Next, V2= 100000•0.0279/120000. So, V2=0.02325m^3.
Answer:
numbers
Explanation:
Virtually all unimaginable processes can be described as the movement of certain objects. To analyze and predict the nature of the movements that result from the different kinds of interactions, some important concepts such as momentum, force and energy have been invented. If momentum, force, and energy are known and expressed in a quantitative way (that is, by numbers) it is possible to establish rules by which the resulting movements can be predicted.