Answer:
The heat loss rate through one of the windows made of polycarbonate is 252W. If the window is made of aerogel, the heat loss rate is 16.8W. If the window is made of soda-lime glass, the heat loss rate is 1190.4W.
The cost associated with the heat loss through the windows for an 8-hour flight is:
For aerogel windows: $17.472 (most efficient)
For polycarbonate windows: $262.08
For soda-lime glass windows: $1,238.016 (least efficient)
Explanation:
To calculate the heat loss rate through the window, we can use a model of heat transmission by conduction throw flat wall. Using unidimensional Fourier law:

In this case:

If we replace the data provided by the problem we get the heat loss rate through one of the windows of each material (we only have to change the thermal conductivities).
To obtain the thermal conductivity of the soda-lime glass we use the graphic attached to this answer (In this case for soda-lime glass k₃₀₀=0.992w/m·K).
To calculate the cost associated with the heat loss through the windows for an 8-hour flight we use this formula (using the heat loss rate calculated in each case):

Answer:
mechanical power used to overcome frictional effects in piping is 2.37 hp
Explanation:
given data
efficient pump = 80%
power input = 20 hp
rate = 1.5 ft³/s
free surface = 80 ft
solution
we use mechanical pumping power delivered to water is
.............1
put here value
= (0.80)(20)
= 16 hp
and
now we get change in the total mechanical energy of water is equal to the change in its potential energy
..............2
and that can be express as
..................3
so
......4
solve it we get
hp
so here
due to frictional effects, mechanical power lost in piping
we get here
put here value
= 16 -13.614
= 2.37 hp
so mechanical power used to overcome frictional effects in piping is 2.37 hp
Answer:
0.5°c
Explanation:
Humidity ratio by mass can be expressed as
the ratio between the actual mass of water vapor present in moist air - to the mass of the dry air
Humidity ratio is normally expressed in kilograms (or pounds) of water vapor per kilogram (or pound) of dry air.
Humidity ratio expressed by mass:
x = mw / ma (1)
where
x = humidity ratio (kgwater/kgdry_air, lbwater/lbdry_air)
mw = mass of water vapor (kg, lb)
ma = mass of dry air (kg, lb)
It can be as:
x = 0.005 (100) / [(100 - 100)]
x = 0.005 x 100 / (100 - 100)
x = 0.005 x 100 / 0
x = 0.5°c
So the temperature to which atmospheric air must be cooled in order to have humidity ratio of 0.005 lb/lb is 0.5°c
Answer:
4140 steel contains 0.4% C having higher yield strength and ultimate strength than the 1045 steel contains 0.45% C
Explanation:
we have given 4140 steel contains 0.4% C
we know here that 4140 steel is low steel alloy , and it have low amount of chromium , manganese etc alloying element
and these elements which are present in 4140 steel they increase yield strength and ultimate strength of steel
while in 1045 steel contains 0.45 % c is plain carbon steel
and it do not contain any alloying element
so that 4140 steel contains 0.4% C having higher yield strength and ultimate strength than the 1045 steel contains 0.45% C
The pressure of water is 7.3851 kPa
<u>Explanation:</u>
Given data,
V = 150×

m = 1 Kg
= 2 MPa
= 40°C
The waters specific volume is calculated:
= V/m
Here, the waters specific volume at initial condition is
, the containers volume is V, waters mass is m.
= 150×
/1
= 0.15
/ Kg
The temperature from super heated water tables used in interpolation method between the lower and upper limit for the specific volume corresponds 0.15
/ Kg and 0.13
/ Kg.
= 350+(400-350) 
= 395.17°C
Hence, the initial temperature is 395.17°C.
The volume is constant in the rigid container.
=
= 0.15
/ Kg
In saturated water labels for
= 40°C.
= 0.001008
/ Kg
= 19.515
/ Kg
The final state is two phase region
<
<
.
In saturated water labels for
= 40°C.
=
= 7.3851 kPa
= 7.3851 kPa