Explanation:
I will do two of each as examples.
Boyle's law says that at constant temperature, the product of the initial pressure and volume equals the product of the final pressure and volume.
1. P₁ V₁ = P₂ V₂
(1.5 atm) (10.0 L) = (0.75 atm) V
V = 20.0 L
2. P₁ V₁ = P₂ V₂
(100.0 kPa) (500.0 mL) = P (1,000.0 mL)
P = 50.0 kPa
Charles' law says that at constant pressure, the quotient of the initial volume and temperature equals the quotient of the final volume and temperature.
6. V₁ / T₁ = V₂ / T₂
(10.0 L) / (1500 K) = V / (750 K)
V = 5.0 L
7. V₁ / T₁ = V₂ / T₂
(500.0 mL) / (100 K) = (1000.0 mL) / T
T = 200 K
Explanation:
hope this would be the right answer ..
Answer:
Two forces that act in opposite directions produce a resultant force that is smaller than either individual force. To find the resultant force subtract the magnitude of the smaller force from the magnitude of the larger force. The direction of the resultant force is in the same direction as the larger force.
Answer:
Around 2.8212 sec
Explanation:
Given the eqn x=1/2at^2+vot
your vo=0
39=1/2(-9.8)t^2
=7.95=t^2
=2.82sec
I am not completely sure, but I believe that it depends on the total mass of the Protons and Neutrons