Newton's second law of motion describes what happens to a body when an external force is applied to it.
Newton's second law of motion states that the force acting on an object is equal to the mass of that object times its acceleration. In mathematical form this is written as
F = ma
Where F is force , m is mass and a is acceleration. The math or logic behind this is that if you double the force, you double the acceleration, but if you double the mass, you cut the acceleration in half.
an electric current is a flow of electric charge in electric circuits this is carried by moving electrons in a wire and an electric circuit is an electrical network of electrical components and model of interconnection consisting electrical elements
Given a = 10 cm/s²
u = 0 cm/s
v = 50 cm/s
we know that
v²=u²+2aS
2500=2×10×S
2500÷20 = S
S= 125 cm
The ramp is 125 cm
It makes no difference. The momentum of either car goes to zero in both cases.
Answer:
a)Q=71.4 μ C
b)ΔV' = 10.2 V
Explanation:
Given that
C ₁= 8.7 μF
C₂ = 8.2 μF
C₃ = 4.1 μF
The potential difference of the battery, ΔV= 34 V
When connected in series
1/C = 1/C ₁ + 1/C₂ + 1/C₃
1/ C= 1/8.4 +1 / 8.4 + 1/4.2
C=2.1 μF
As we know that when capacitor are connected in series then they have same charge,Q
Q= C ΔV
Q= 2.1 x 34 μ C
Q=71.4 μ C
b)
As we know that when capacitor are connected in parallel then they have same voltage difference.
Q'= C' ΔV'
C'= C ₁+C₂+C₃ (For parallel connection)
C'= 8.4 + 8.4 + 4.2 μF
C'=21 μF
Q'= C' ΔV'
Q'=3 Q
3 x 71.4= 21 ΔV'
ΔV' = 10.2 V