No. If I count the number of tiny blue eggs in a Robin's nest, that's a quantitative observation.
Answer:
This is an example of Inelastic colission
Explanation:
Step one:
given:
mass of moose m1 = 620 kg
mass of train m2= 10,000kg
Initial velocity of moose u1= 0 m/s
Initial velocity of train v1 = 10m/s
combined velocity of the system is given as v
Applying the conservation of momentum equation we have
m1u1+ m2u1= (m1+m2)V
substitutting we have
620*0+10000*10= (620+10000)V
100000= 10620V
divide both sides by 10620
V = 100000/10620
V=9.41m/s
The velocity of the moose after impact is 9.41m/s
Answer:
It may seem as though burning destroys matter, but the same amount, or mass, of matter still exists after a campfire as before. Look at Figure 3.7.1 below. It shows that when wood burns, it combines with oxygen and changes not only to ashes, but also to carbon dioxide and water vapor. The gases float off into the air, leaving behind just the ashes. Suppose you had measured the mass of the wood before it burned and the mass of the ashes after it burned. Also suppose you had been able to measure the oxygen used by the fire and the gases produced by the fire. What would you find? The total mass of matter after the fire would be the same as the total mass of matter before the fire.
NO. although the arrangement of the atoms will change, the total number stays constant.
Answer:
Weight is a consequence of the universal law of gravitation
Explanation:
Weight, gravitational force of attraction on an object, caused by the presence of a massive second object, such as the Earth or Moon. Weight is a consequence of the universal law of gravitation: any two objects, because of their masses, attract each other with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.