A differential equation is one that contains the derivative of a function. For example f(x) + 3 = 4f'(x) - 2. Usually you will be given one of the functions and initial conditions if you have to solve.
Answer:
C
Step-by-step explanation:
We want a line of best fit, which means we want to create a line that the data points will lie closest to.
One thing we can do is find the slope between the bottom-leftmost point and the top-rightmost point. This is because if we were to draw a line connecting these two, it will cut through the data quite well.
Those two points are (9, 15) and (16, 18), so the slope is change in y divided by the change in x:
(18 - 15) ÷ (16 - 9) = 3 ÷ 7 ≈ 0.4
Eliminate A and B.
Now we need to determine the y-intercept. This needs no calculations; simply look at the graph: there's no way a line cutting through the y-intercept point of (0, 18) will perfectly match the data points; instead it must be a y-intercept lower than 18. So, eliminate D.
The answer is C.
Answer:
V≈184.31
Step-by-step explanation:
V=πr2h
3=π·42·11
3≈184.30677
Answer:
(a) B
(b) $2
Step-by-step explanation:
(a) Let's say the cost of a ticket is t and the cost of popcorn is p. Then we can write the two equations from the table:
12t + 8p = 184
9t + 6p = 138
We need to solve this, so let's use elimination. Multiply the first equation by 3 and the second equation by 4:
3 * (12t + 8p = 184)
4 * (9t + 6p = 138)
We get:
36t + 24p = 552
36t + 24p = 552
Subtract the second from the first:
36t + 24p = 552
- 36t + 24p = 552
________________
0 = 0
Since we get down to 0 = 0, which is always true, we know that we cannot determine the cost of each ticket because there is more than one solution (infinitely many, actually). The answer is B.
(b) Our equation from this, if we still use t and p, is:
5t + 4p = 82
Now, just choose any of the two equations from above. Let's just pick 9t + 6p = 138. Now, we have the system:
5t + 4p = 82
9t + 6p = 138
To solve, let's use elimination again. Multiply the first equation by 6 and the second one by 4:
6 * (5t + 4p = 82)
4 * (9t + 6p = 138)
We get:
30t + 24p = 492
36t + 24p = 552
Subtract the second from the first:
36t + 24p = 552
- 30t + 24p = 492
________________
6t + 0p = 60
So, t = 60/6 = $10. Plug this back into any of the equations to solve for p:
5t + 4p = 82
5 * 10 + 4p = 82
50 + 4p = 82
4p = 32
p = 32/4 = $8
So the ticket costs 10 - 8 = $2 more dollars than the popcorn.