Answer:
About 609,000 Cowboy stadiums could fit inside of Mount Everest
Step-by-step explanation:
we have
The estimate volume of Mount Everest is at around 
The Dallas Cowboys Stadium has a volume of 
step 1
Convert ft³ to km³
we know that
1 km=3,280.84 ft
so

step 2
To find how many Cowboy stadiums could fit inside of Mount Everest, divide the volume of Mount Everest by the volume of the Dallas Cowboys Stadium

Round to the nearest Thousands

The volume of Mount Everest is about 609,000 times greater than the volume of the Dallas Cowboys Stadium
The absolute value of -81 has the same absolute value as that of 81 because they both have the same distance to 0.
We write an inequality:



This equation cannot be solved using trivial methods found in high-school classes, so we resort to graphical examination.

is a linear function while

is an exponential one (with limit zero as

approaches

). We see that

at approximately

and

.
Indeed, using a computer algebra system such as the ones on modern TI calculators and on many internet sites gives equality at

. By observing our graph, we see that

when

or

.
Answer:
$1,109.62
Step-by-step explanation:
Let's first compute the <em>future value FV.</em>
In order to see the rule of formation, let's see the value (in $) for the first few years
<u>End of year 0</u>
1,000
<u>End of year 1(capital + interest + new deposit)</u>
1,000*(1.09)+10
<u>End of year 2 (capital + interest + new deposit)</u>
(1,000*(1.09)+10)*1.09 +10 =

<u>End of year 3 (capital + interest + new deposit)</u>

and we can see that at the end of year 50, the future value is

The sum

is the <em>sum of a geometric sequence </em>with common ratio 1.09 and is equal to

and the future value is then

The <em>present value PV</em> is

rounded to the nearest hundredth.