Answer: False
=============================================
Explanation:
I'll use x in place of p.
The original equation 10x^2-5x = -8 becomes 10x^2-5x+8 = 0 after moving everything to one side.
Compare this to ax^2+bx+c = 0
We have
Plug those three values into the discriminant formula below
d = b^2 - 4ac
d = (-5)^2 - 4(10)(8)
d = 25 - 40*8
d = 25 - 320
d = -295
The discriminant is negative, which means we have no real solutions. If your teacher has covered complex or imaginary numbers, then you would say that the quadratic has 2 complex roots. If your teacher hasn't covered this topic yet, then you'd simply say "no real solutions".
Either way, this quadratic doesn't have exactly one solution. That only occurs when d = 0. Therefore, the original statement is false.
we are given

now, we can factor out right side term


now, we can plug back
and we get
so,
.............Answer
We have been given the expression

We can rewrite the expression as 
In order to simplify the given expression, we can check if we have any common terms in the numerator and denominator.
We can write the term 72 which is in the numerator as 
Thus, the expression becomes

We can see that 4 is common in both numerator and denominator. Hence, we can cancel 4. Thus, we are left with

Therefore, we can rewrite the given expression as 54.
Answer:
See below ~
Step-by-step explanation:
<u>Question 1</u>
⇒ -7x - (8x + 16) = -1
⇒ -7x - 8x - 16 = -1
⇒ -15x = 15
⇒ x = -1
⇒ y = 8(-1) + 16 = 8
⇒ Solution = <u>(-1, 8)</u>
<u></u>
<u>Question 2</u>
⇒ 3x + 4(-3x - 18) = 0
⇒ 3x - 12x - 72 = 0
⇒ -9x = 72
⇒ x = -8
⇒ y = -3(-8) - 18 = 6
⇒ Solution = <u>(-8, 6)</u>
<u>Question 3</u> (not clear)
<u>Question 4</u>
⇒ -8x - 7(6x) = 0
⇒ -8x - 42x = 0
⇒ -50x = 0
⇒ x = 0
⇒ y = 6(0) = 0
⇒ Solution = <u>(0, 0)</u>
<u>Question 8</u>
- 2x - 6y = -14
- y = -5x - 19
⇒ 2x - 6(-5x - 19) = -14
⇒ 2x + 30x + 114 = -14
⇒ 32x = -128
⇒ x = -4
⇒ y = -5(-4) - 19 = 1
⇒ Solution = <u>(-4, 1)</u>