Answer:
48 g/mol
Explanation:
Step 1: Calculate the mass of the gas (m)
According to the law of conservation of mass, the mass of the solid before the decomposition must be equal to the sum of the masses of the solid residue and the gas
mSolid = mResidue + mGas
mGas = mSolid - mResidue = 4.73 g - 4.10 g = 0.63 g
Step 2: Convert 320 cm³ to L
We will use the conversion factor 1 L = 1000 cm³.
320 cm³ × 1 L/1000 cm³ = 0.320 L
Step 3: Calculate the moles of gas (n)
The gas is at room temperature (298.15 K) and room pressure (1 atm). We can calculate the moles of gas using the ideal gas equation.
P × V = n × R × T
n = P × V/R × T
n = 1 atm × 0.320 L/(0.0821 atm.L/mol.K) × 298.15 K = 0.0131 mol
Step 4: Calculate the molecular mass of the gas (M)
We will use the following expression.
M = m/n = 0.63 g/0.0131 mol = 48 g/mol
<span>Firstly, we know that M= m/n, the main formula which shows the relationship
between m, n, and M. The nknown compound contains only carbon, hydrogen, and
oxygen, so we can get n(C)=m/M, from M(C)=
m(C)/n (C), besides the stoechiometric
equality, we have </span>
n( C)= m(C)/M(C ) = m(CO2)/ M(CO2)=11/44, because m(CO2)=11.0,
M(CO2)=44.01
so n(C )= 0.24moles,
Answer: C) Roman numeral following the name.
Explanation: If we want to name an ionic compound like NaCl then we can easily write its name. Na is sodium and Cl is chlorine. First we write the name of the metal ion and then the name of the anion it has. Here we have mono atomic ion and for these we use the suffix -ide. So, the name will be sodium chloride.
Now, if we have something like
and we write the name as Iron chloride, then it will not be correct since Fe is a transition metal and it shows +2 and +3 oxidation states. So, to overcome this difficulty, a roman numeral is used for the oxidation state of the metal ion. The name of above compound will be Iron(III)chloride. Similarly, if we have
then its name will be written as Iron(II)chloride.
In both the above names, the roman numerals (III) and (II) are indicating numerical value of the charge of the metal ion. So, the correct choice is C) Roman numerals following the name.
when naming a transition metal ion that can have more than one common ionic charge, the numerical value of the charge can be indicated by a Roman numeral following the name.
NH4NO3 b) C8H8O4 c) O3 d) C3H5(NO3)3
The answer for your question is <span>No. This is because in given conditions, it is not the most stable form of oxygen's element. It will not equate into zero because there will be charge remained after balancing the equation.
</span>