Answer:
The angle for the forward Mach line is 19.47°
The angle for the rearward Mach line is 5.21°
Explanation:
From table A-1 (Modern Compressible Flow: with historical perspective):
(M₁ = 3)
If Po₁ = Po₂

Table A-1:

Table A-5:
v₁ = 49.76°
μ₁ = 19.47°
v₂ = 60.55°
μ₂ = 16°
θ = 60.55 - 49.76 = 10.79°
The angle for the forward Mach line is:
μ₁ = 19.47°
The angle for the rearward Mach line is:
θr = μ₂ - θ = 16 - 10.79 = 5.21°
Answer:
mechanical energy
Explanation:
Mechanical energy is the combination of both potential energy and kinetic
Mechanical energy can be divided as
1)kinetic energy, this energy vis regarded as the energy of motion
2) potential energy which is the stored energy of position.
Mechanical energy reffered to as
motion energy this energy is responsible for the movement of an object based on its position as well as motion.
Mechanical energy= U + K
Where U= potential energy
K= Kinectic energy
As the tire is sitting on top of a ramp, it posses "potential energy" as it is released and rolls down the ramp the potential is converted to Kinectic energy
Answer: 9000 kgm/s
Explanation:
Mass of car = 1500 kg
Speed by which car moves = 6 m/s. Momentum of the car = ?
Recall that:
Linear momentum = Mass x Speed
= 1500kg x 6m/s
= 9000 kgm/s
Thus, the linear momentum of the car is 9000 kgm/s
Answer:
a) 86 atm
b) 86 atm
c) 645 m/s
Explanation:
See attachment for calculations on how i arrived at the answer
Answer: i think c
Explanation:QA: “What is ordinary glass made of ?”
Glass is mostly silica, or silicon dioxide, present as quartz in many types of sand. Pure silica forms a highly transparent glass, but has a very high melting or softening temperature, around 1700°C. Even at such high temperatures it is highly viscous and difficult to work. Its use is largely confined to applications requiring high transparency to ultra-violet and infra-red radiation, stability at elevated temperatures or low thermal expansion coefficient.
“Ordinary glass” windows and drinking vessels are typically made from soda-lime glass, containing silica with around 25% sodium, calcium and other oxides, which together reduce the softening temperature to roughly 500–600°C