What are you asking???? If the formula had no atoms of oxygen then......
Answer:
The pressure of CH3OH and HCl will decrease.
The final partial pressure of HCl is 0.350038 atm
Explanation:
Step 1: Data given
Kp = 4.7 x 10^3 at 400K
Pressure of CH3OH = 0.250 atm
Pressure of HCl = 0.600 atm
Volume = 10.00 L
Step 2: The balanced equation
CH3OH(g) + HCl(g) <=> CH3Cl(g) + H2O(g)
Step 3: The initial pressure
p(CH3OH) = 0.250atm
p(HCl) = 0.600 atm
p(CH3Cl)= 0 atm
p(H2O) = 0 atm
Step 3: Calculate the pressure at the equilibrium
p(CH3OH) = 0.250 - X atm
p(HCl) = 0.600 - X atm
p(CH3Cl)= X atm
p(H2O) = X atm
Step 4: Calculate Kp
Kp = (pHO * pCH3Cl) / (pCH3* pHCl)
4.7 * 10³ = X² /(0.250-X)(0.600-X)
X = 0.249962
p(CH3OH) = 0.250 - 0.249962 = 0.000038 atm
p(HCl) = 0.600 - 0.249962 = 0.350038 atm
p(CH3Cl)= 0.249962 atm
p(H2O) = 0.249962 atm
Kp = (0.249962 * 0.249962) / (0.000038 * 0.350038)
Kp = 4.7 *10³
The pressure of CH3OH and HCl will decrease.
The final partial pressure of HCl is 0.350038 atm
Hello there!
Electronegativity is what determine's an atoms ability to attract electrons shared in a chemical bond.Ionization, atomic radius, and also <span> ionic radius both would not determine this as they wouldn't have any similar bond that would attract.
</span><span>
Your correct answer would be (option c)
</span><span>A. ionization
B. atomic radius
C. electronegativity
D. ionic radius
I hope this helps you!</span>
Answer:
Explanation:
Use your other senses such as touch or smell, does it react in different temperatures, is it then visible under a microscope, does it react with different elements or gases? Think outside the box.
Answer:
Mole fraction O₂= 0.43
Explanation:
Mole fraction is the moles of gas/ total moles.
Let's determine the moles of each:
Moles O₂ → 15.1 g / 16 g/mol = 0.94
Moles N₂ → 8.19 g / 14 g/mol = 0.013
Moles H₂ → 2.46 / 2 g/mol = 1.23
Total moles = 2.183
Mole fraction O₂= 0.94 / 2.183 → 0.43