1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Evgen [1.6K]
3 years ago
7

What is the atomic mass, in amu, of this atom?

Chemistry
1 answer:
hjlf3 years ago
7 0

Answer:precisely 1/12 the mass of an atom of carbon-12.

Explanation:The carbon-12 (C-12) atom has six protons and six neutrons in its nucleus. In imprecise terms, one AMU is the average of the proton rest mass and the neutron rest mass.

You might be interested in
Consider the reaction Mg(s) + I2 (s) → MgI2 (s) Identify the limiting reagent in each of the reaction mixtures below:
Lapatulllka [165]

Answer:

a) Nor Mg, neither I2 is the limiting reactant.

b) I2 is the limiting reactant

c) <u>Mg is the limiting reactant</u>

<u>d) Mg is the limiting reactant</u>

<u>e) Nor Mg, neither I2 is the limiting reactant.</u>

<u>f) I2 is the limiting reactant</u>

<u>g) Nor Mg, neither I2 is the limiting reactant.</u>

<u>h) I2 is the limiting reactant</u>

<u>i) Mg is the limiting reactant</u>

Explanation:

Step 1: The balanced equation:

Mg(s) + I2(s) → MgI2(s)

For 1 mol of Mg we need 1 mol of I2 to produce 1 mol of MgI2

a. 100 atoms of Mg and 100 molecules of I2

We'll have the following equation:

100 Mg(s) + 100 I2(s) → 100MgI2(s)

This is a stoichiometric mixture. <u>Nor Mg, neither I2 is the limiting reactant.</u>

b. 150 atoms of Mg and 100 molecules of I2

We'll have the following equation:

150 Mg(s) + 100 I2(s) → 100 MgI2(s)

<u>I2 is the limiting reactant</u>, and will be completely consumed. There will be consumed 100 Mg atoms. There will remain 50 Mg atoms.

There will be produced 100 MgI2 molecules.

c. 200 atoms of Mg and 300 molecules of I2

We'll have the following equation:

200 Mg(s) + 300 I2(s) →200 MgI2(s)

<u>Mg is the limiting reactant</u>, and will be completely consumed. There will be consumed 200 I2 molecules. There will remain 100 I2 molecules.

There will be produced 200 MgI2 molecules.

d. 0.16 mol Mg and 0.25 mol I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

<u>Mg is the limiting reactant</u>, and will be completely consumed. There will be consumed 0.16 mol of I2. There will remain 0.09 mol of I2.

There will be produced 0.16 mol of MgI2.

e. 0.14 mol Mg and 0.14 mol I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

This is a stoichiometric mixture. <u>Nor Mg, neither I2 is the limiting reactant.</u>

There will be consumed 0.14 mol of Mg and 0.14 mol of I2. there will be produced 0.14 mol of MgI2

f. 0.12 mol Mg and 0.08 mol I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

<u>I2 is the limiting reactant</u>, and will be completely consumed. There will be consumed 0.08 moles of Mg. There will remain 0.04 moles of Mg.

There will be produced 0.08 moles of MgI2.

g. 6.078 g Mg and 63.455 g I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

Number of moles of Mg = 6.078 grams / 24.31 g/mol = 0.250 moles

Number of moles I2 = 63.455 grams/ 253.8 g/mol = 0.250 moles

This is a stoichiometric mixture. <u>Nor Mg, neither I2 is the limiting reactant.</u>

There will be consumed 0.250 mol of Mg and 0.250 mol of I2. there will be produced 0.250 mol of MgI2

h. 1.00 g Mg and 2.00 g I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

Number of moles of Mg = 1.00 grams / 24.31 g/mol = 0.0411 moles

Number of moles I2 = 2.00 grams/ 253.8 g/mol = 0.00788 moles

<u>I2 is the limiting reactant</u>, and will be completely consumed. There will be consumed 0.00788 moles of Mg. There will remain 0.03322 moles of Mg.

There will be produced 0.00788 moles of MgI2.

i. 1.00 g Mg and 2.00 g I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

Number of moles of Mg = 1.00 grams / 24.31 g/mol = 0.0411 moles

Number of moles I2 = 20.00 grams/ 253.8 g/mol = 0.0788 moles

<u>Mg is the limiting reactant</u>, and will be completely consumed. There will be consumed 0.0411 moles of Mg. There will remain 0.0377 moles of I2.

There will be produced 0.0411 moles of MgI2.

4 0
3 years ago
Predict how many H1 NMR signals (individual resonances, not counting splitting) are expected for the compound.
Lyrx [107]

Answer:

3 H1 NMR signals

Explanation:

NB: kindly check the diagram of the chemical compound in the attached picture.

This particular Question is based on the part of chemistry which is known as spectroscopy. Spectroscopy is used in the Determination or in identifying chemical compounds. H'NMR works on the principle of nuclear magnetic resonance.

In order to solve this question, one has to count the number of hydrogen in unique location. The diagram in the attached show how hydrogen is been counted.

The numbers of signals is the number of different chemical environments in which hydrogen atoms are located.

NB: signals is also the same as peak in H'NMR.

Hence, the number of H1 NMR signals in this chemical compound is 3.

3 0
3 years ago
How does H2O represent compounds
Leno4ka [110]

Answer:

Compound consist of molecules that are identical, this molecules are made up of atoms of two or more elements. An element is identified based on the atomic property of the element. Water as a compound is composed of 2 Hydrogen atom to 1 oxygen atom and the molecule is H2O.

7 0
2 years ago
Which of these could create static electricity?
Vinil7 [7]

c well actually I remember being tought this but I cant remember it 100

6 0
3 years ago
Read 2 more answers
How many grams of potassium chloride are needed to make 100 ml of a solution containing 250 mosmol/l? (m.w. of potassium is 39 a
LUCKY_DIMON [66]
In dilute solutions, the unit osmolarity is being used. It usually has units milliosmols per liter of solution or mOsmol/L. An osmole defines the number of moles of the solute that would have an effect on the osmotic pressure of the solution. Osmolarity is calculated by the product of the molarity and the number of particles in the solution which is 2 for potassium chloride. We calculate as follows:
Osmolarity = molarity (# of particles)250 mosmol/L ( 1 osmol / 1000 osmol) = x moles / .100 L (2)
x moles = 0.0125 mol KCl
mass KCl = 0.0125 mol KCl ( 39 + 35.5 g/mol) = 0.93125 g KCl
5 0
3 years ago
Other questions:
  • Can two or more elements be combined chemically to make a new element? Explain your answer.
    6·2 answers
  • The energy that moving electric charges carry is called
    7·1 answer
  • Which solution has the lowest freezing point?
    5·1 answer
  • How much heat is required to raise the temperature of 179g of acetic acid, CH3COOH, from 250C to 82.70C?
    5·1 answer
  • Extracting oil from shale deposits a has been initiated on a large scale in the United States and will soon surpass Canada's pro
    13·1 answer
  • Atoms of different
    6·1 answer
  • When an element exist in nature by itself, it must have a charge of
    11·1 answer
  • A gaseous mixture containing 7.00 moles of nitrogen, 2.50 moles of oxygen, and 0.500 mole of helium exerts a total pressure of 0
    13·1 answer
  • How many atoms are in a 0.50 g sample of helium
    11·1 answer
  • Which of the following statements is true about magnets?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!