I think that it is qualitative data
Converting mmHg to atm is solved by division.
Example: Convert 745.0 to atm.
Solution- divide the mmHg value by the 760.0 mmHg / atm.
745 mmHg over 760.0 mmHg/atm
atm value is 0.980263
Now, I am a medical student and we have never had to convert a BP (blood pressure) to atm from mmHg, only ever kPA. SO, I am going to take a guess here and say that when you do the work to solve this, you are going to convert the Systolic (upper #) which is the 145. You should get 0.190789 and then convert the Diastolic (lower #) which is 65. You should get 0.08552632.
So your fraction so to speak should read, 0.190789/0.08552632 or 0.190789 over 0.08552632
(Just to note that is way to low of a BP, although it is irrelevant) Best wishes and good luck. "Remember, never just look for the right answer, look for why it is the right answer!"
Answer:
<em>1</em><em>.</em><em>Capillary action is important for moving water (and all of the things that are dissolved in it) around. </em>
<em>2</em><em>.</em><em>the pattern formed on an adsorbent medium by the layers of components separated by chromatography. </em>
Explanation:
hope this help you
Answer: The atomic weight of the metal would be 85.47.
Explanation:
Mass of isotope 1 of metal = 84.9118
% abundance of isotope 1 of metal = 72.15% =
Mass of isotope 2 of metal= 86.9092
% abundance of isotope 2 of metal = 27.85% =
Formula used for average atomic mass of an element :

Therefore, the atomic weight of the metal would be 85.47.
The molarity of HBr solution is 0.239 M
calculation
write the equation for reaction
that is LiOH +HBr → LiBr +H20
find the moles of LiOH used
moles =molarity x volume
=0.205 x 29.15 = 5.976 moles
by use of mole ratio between LiOH :HBr which is 1:1 the moles of HBr is therefore= 5.976 moles
Molarity of HCL= moles /volume
= 5.976/25 = 0.239 M