consider the motion along the horizontal direction :
v₀ = initial velocity in horizontal direction as the ball rolls off the table = 3.0 m/s
X = horizontal displacement of the ball = 2.0 m
a = acceleration along the horizontal direction = 0 m/s²
t = time taken to land = ?
using the kinematics equation
X = v₀ t + (0.5) a t²
2.0 = 3.0 t + (0.5) (0) t²
t = 2/3
consider the motion of the ball along the vertical direction
v₀ = initial velocity in vertical direction as the ball rolls off the table = 0 m/s
Y = vertical displacement of the ball = height of the table = h
a = acceleration along the vertical direction = 9.8 m/s²
t = time taken to land = 2/3
using the kinematics equation
Y = v₀ t + (0.5) a t²
h = 0 t + (0.5) (9.8) (2/3)²
h = 2.2 m
C 2.2 m
Answer:
Hello todays answer should be False i am sorry if i am incorrect-Lucy
Explanation:
Here Change in Kinetic Energy
= Work Done by Friction
Therefore, substituting the
given values to the equation, we get
0.5 * m * (vFinal^2 -
vInitial^2) = µ m g * d
Therefore
0.5*( 5.90^2 - Vfinal^2 ) =
0.100*9.8*2.10
Therefore
vfinal = 5.54 m/sec
<span> </span>
Answer:
If a Gaussian surface is completely inside an electrostatic conductor, the electric field must always be zero at all points on that surface.
Explanation:
Option A is incorrect because, given this case, it is easier to calculate the field.
Option B is incorrect because, in a situation where the surface is placed inside a uniform field, option B is violated
Option C is also incorrect because it is possible to be a field from outside charges, but there will be an absence of net flux through the surface from these.
Hence, option D is the correct answer. "If a Gaussian surface is completely inside an electrostatic conductor, the electric field must always be zero at all points on that surface."
Answer: n the laboratory, the life time of a particle moving with speed 2.8 x 10^10 cm\s is found to be 2.5 x 10^-7. Calculate the proper life of the ...
Explanation: