Hudson Bay is the restricted basin that has the coolest temperatures
Hudson Bay is a restricted basin which remains frozen or is dominated by ice over the summer solstice and through- out much of the high-sun season. This basin experiences a harsh continental climate.
The average annual temperature in almost the entire bay is around 0 °C (32 °F) or below. In the extreme northeast, winter temperatures average as low as −29 °C or −20.2 °F. The region of this basin has very low year-round average temperatures.
This basin starts freezing up by early November, and the northern part of the basin is typically entirely iced over by the end of the month.
correct answer is Hudson bay
learn more about basin :
brainly.com/question/11871406?referrer=searchResults
#SPJ4
Answer: The correct answer is "No".
Explanation:
Gravity: It is the force which causes object to fall on the earth. It is the force which attracts bodies towards each other.
Potential difference: It is defined as the potential acting between the two points. The work done in moving the unit positive charge from one location to the another location.
The potential difference in battery is caused by the electrodes. There are two terminals in battery: Negative terminal which is at lower potential and Positive terminal which is at higher potential. It forces the electrons to flow in the circuit which constitutes the current.
The gravity and the potential difference have no relation between them.
Therefore, gravity have no effect on the potential difference of a battery.
Answer:
a. 11 m/s at 76° with respect to the original direction of the lighter car.
Explanation:
In this exercise, since both cars make a right angle, let's assume that the lighter car only has a horizontal velocity component (vx) and that the heavier one only has a vertical velocity component (vy). The final velocities for both components for the system can be determined as:

Assume that the lighter car has a 1kg mass and that the heavier car has a 4 kg mass.

The magnitude of the final velocity of the wreck can be found as:
![v_{f}^{2}= v_{fx}^{2}+ v_{fy}^{2}\\v_{f}=\sqrt[]{2.6^{2} + 10.4^{2}} \\v_{f}= 10.72](https://tex.z-dn.net/?f=v_%7Bf%7D%5E%7B2%7D%3D%20v_%7Bfx%7D%5E%7B2%7D%2B%20v_%7Bfy%7D%5E%7B2%7D%5C%5Cv_%7Bf%7D%3D%5Csqrt%5B%5D%7B2.6%5E%7B2%7D%20%2B%2010.4%5E%7B2%7D%7D%20%5C%5Cv_%7Bf%7D%3D%2010.72)
The final velocity has an intensity of roughly 11 m/s
As for the angle, it can be determined in respect to the lighter car (x axis) as follows:

Therefore, the wreck has a velocity with an intensity of 11 m/s at 76° with respect to the original direction of the lighter car.
Answer:
1)m=89.01 g
2)V(max) = 97.3 cm/s
Explanation:
Given that
K= 15 N/m
The maximum amplitude ,A=7.5 cm = 0.075 m
Given that 31 oscillations in 15 seconds ,this means that frequency f
f=\dfrac{31}{15}
f=2.066 Hz
lets take mass of the ball = m kg



m=0.08901 kg
m=89.01 g
The maximum speed
V(max)= ω x A
ω = 2π f= 2 x π x 2.066 = 12.98 rad/s
V(max) = 12.98 x 0.075 =0.973 m/s
V(max) = 97.3 cm/s