Answer:
yo ni siquiera he leido Organizar Notes y quisiera responderte pero el sistema no me deja escribir bien se esta alocando
Explanation:
No, the speed at which an object falls is not equal to the acceleration at which it falls.
Answer:
Option B
Explanation:
Speed is defined as how fast an object can cover a specific distance and in what time it covers. So it is measured as the ratio of distance covered to the time taken to cover that distance. While acceleration is the rate of change of velocity. Moreover, speed is a scalar quantity and acceleration is a vector quantity. So most of the times, the direction will play an important role in the varying values of speed and acceleration. Also, acceleration of an object will depend upon the force and mass of the object. Thus, speed and acceleration will not attain same value always.
Answer:
Cam Newton (currently but might change because he has been allowed to trade)
Will Grier
Kyle Allen
Explanation:
Answer:
so initial speed of the rock is 30.32 m/s
correct answer is b. 30.3 m/s
Explanation:
given data
h = 15.0m
v = 25m/s
weight of the rock m = 3.00N
solution
we use here work-energy theorem that is express as here
work = change in the kinetic energy ..............................1
so it can be written as
work = force × distance ...................2
and
KE is express as
K.E = 0.5 × m × v²
and it can be written as
F × d = 0.5 × m × (vf)² - (vi)² ......................3
here
m is mass and vi and vf is initial and final velocity
F = mg = m (-9.8) , d = 15 m and v{f} = 25 m/s
so put value in equation 3 we get
m (-9.8) × 15 = 0.5 × m × (25)² - (vi)²
solve it we get
(vi)² = 919
vi = 30.32 m/s
so initial speed of the rock is 30.32 m/s
Answer:
0.34
Explanation:
2.5 Mg = 2500 kg
The change in speed from 100 km/h to 40 km/h is

The deceleration caused by friction force is the change in speed per unit of time

Using Newton 2nd law we can calculate the friction force that caused this deceleration:
F = ma = 2500 * 3.33 = 8333 N
Let g = 9.8m/s2. Friction force is the product of normal (gravity) force and friction coefficient

