Concepts to understand before solving:
-Oxygen is ALWAYS reduced
-OIL- Oxidation Is Loss of electrons
-RIG- Reduction Is Gain of electrons
-the element that is oxidized is the reducing agent
-the element that is reduced is the oxidizing agent
A. 2H2 + O2 —> 2H2O
O is reduced, making it the oxidizing agent
H is oxidized, making it the reducing agent
B. 2KNO3 —> 2KNO2 + O2
O is reduced, making it the oxidizing agent
KNO is oxidized, making it the reducing agent
boyles law states that the volumes of a gas will decrease as pressure increases if the temperature remains constant.
charles law states that the volume of a gas will increase as temp increases if the pressure remains constant.
gay-lussacs law states that the pressure increases as temp increases if the volume remains constant.
According to the balanced equation of this reaction:
N2(g) + 3H2(g) ↔ 2NH3(g)
and when we have Kp = 4.51 x 10^-5 so, in the Kp equation we will substitute by the value of the P for each gas to compare the value with Kp = 4.51x10^-5
a) when we have 98 atm NH3, 45 atm N2, 55 atm H2 by substitution in Kp equation:
Kp= [p(NH3)]^2 / [p(N2)]*[p(H2)]^3 = [98]^2 / [45]*[55]^3
= 1.28x10^-3
So here the value is higher than the value of the given Kp.
so the reaction will go leftwards toward the reactants ( to reduce the value of Kp) to reach the equilibrium.
b) When 57 atm NH3, 143 atm N2, No H2 so like a) by substitution:
Kp = [57]^2 / [143] = 22.7
So the reaction will go leftwards toward the reactants to reduce the value of Kp to reach equilibrium.
c) when 13 atm NH3, 27 atm N2, 82 H2
Kp = [13]^2 / [27]*[82]^3 = 1.135 x 10^-5 So this value is lower than the Kp which is given.
so, the reaction will go towards the right toward the products to increase the value of Kp to reach the equilibrium.
The initial concentration of solution is 0.0693 M. The volume of solution taken is 10 mL and it is diluted to a final volume of 500 mL.
According to dilution law, the product of initial concentration and volume is equal to the product of final concentration and volume as follows:

Here,
is initial concentration,
is final concentration,
is initial volume and
is final volume.
Rearranging to calculate final concentration,

Putting the values,

Therefore, concentration of the resulting solution is 0.001386 M.
The answer is c. hydrogen is flammable and dangerous