The mortar and pestle is most commonly used in chemical laboratories or in the kitchen. Its key function is to grind the material into smaller pieces, usually into its powdered form. It looks like that shown in the picture. The mortar is the bowl in which the material to be pounded is placed, and the pestle does the pounding.
Now, when you ask if it can only pound one at a time, my honest answer is, it depends. Depending on the size of your mortar, you could grind materials two or three at a time. But if you are concerned with contamination, then you do it one at a time, especially if you don't want them to get mixed up.
Answer:
2VO + 3Fe2O3 —> V2O5 + 6FeO
Explanation:
The skeletal equation for the reaction is given below below:
VO + Fe2O3 —> V2O5 + FeO
We can balance the equation above by doing the following:
There are 2 atoms of V on the right side and 1 atom on the left side. It can be balance by putting 2 in front of VO as shown below:
2VO + Fe2O3 —> V2O5 + FeO
Now, we have a total of 5 atoms of O on the left and 6 atoms on the right side. We can balance it by putting 3 in front of Fe2O3 and 6 in front of FeO as shown below:
2VO + 3Fe2O3 —> V2O5 + 6FeO
Now, we can see that the equation is balanced
Answer:
Electrolysis
Explanation:
The electrolysis of water is one such experiment that shows that water is made up of hydrogen and oxygen atoms only in the ratio of 2 to 1.
In the electrolysis of water, electricity is passed through acidified water to cause it to decompose.
The electrolysis of water is also known as the electrolysis of dilute tetraoxosulphate (VI) acid.
At the cathode, H⁺ ions are discharged and hydrogen gas is liberated:
2H⁺ + 2e⁻ → H₂
At the anode, both the sulfate ion and hydroxyl ions migrate to this electrode. Only the OH⁻ is selected for preferential discharge due to its lower position in that activity series.
4OH⁻ → 2H₂O + O₂ + 4e⁻
Oxygen gas is produced at the anode.
This electrolysis demonstrates the volumetric composition of water that is, 2 volumes of hydrogen at the cathode and 1 volume of oxygen at the anode.
The boundaries of time zones correspond<span> roughly to lines of longitude
</span>This is why:
<span>The time in each successive time zone is one hour different from the times in neighboring time zones. To establish time zones,
Earth's rotation rate of 360 degrees of longitude per day was divided
by 24 hours. The result shows that Earth turns 15 degrees of longitude
per hour.
Hopefully I helped ^.^ Mark Brainly if possible~
</span>