Answer:
9.6m/s
Explanation:
Using the equation S=d/t where s=speed, d=distance, and t=time
plug in the known variables
S=120m/12.5s
S=9.6m/s
<span>
The taut guitar string haspotencial energy which we can see in action.</span> <span>· so option a is correct.</span>
The density of the nickel was greater than that of the quarter and penny, thus, the results supports the hypothesis.
<h3>What is density of substance?</h3>
The density of a substance is a measure of how tightly-packed the particles of the substance are.
Density is calculated as the ratio of the mass of the substance and the volume of the substance.
The hypothesis of the lab to compare the densities of a penny, a nickel, and a quarter is:
- If the nickel has a greater density than the quarter and penny, then it will have a greater mass to volume ratio. If the nickel has a lower density than the quarter and penny, then it will have a lower mass-to-volume ratio.
The average mass and the average volume of a penny, a nickel, and a quarter are then used to determine the density of each coin.
Based on obtained results, it would be found that the density of the nickel was greater than that of the quarter and penny. Therefore, the results supports the hypothesis.
In conclusion, the density of a substance depends on the mass and the volume.
Learn more about density at: brainly.com/question/1354972
#SPJ1
Answer:
4A
Explanation:
According to ohm's law;
E = IRt where;
E is the source voltage = 24volts
I is the total current flowing in the circuit = ?
Rt is the total effective resistance in the circuit.
To find Rt, we will resolve the resistors in parallel first.
Since 6ohms and 12ohms resistors are in parallel, their effective resistance will give;
1/R = 1/6+1/12
1/R= 2+1/12
1/R = 3/12
3R = 12
R = 4ohms.
This resistor will now be in series with the 2.0ohms resistor to finally have;
Rt = 4+2
Rt = 6ohms
From the ohms law formula;
I = E/Rt
I = 24/6
I = 4Amperes
The total current in the circuit is 4A
This same currents will flow in the 2ohms resistor since same current flows in a series connected resistors.
Answer:
It gives our light which we need for probably everything.
Explanation: