Answer:
18.06 × 10²³ molecules
Explanation:
Add the two amounts of molecules together.
6.02 × 10²³ + 12.04 × 10²³ = 18.06 × 10²³
You will have 18.06 × 10²³ molecules in the vessel when the reaction is complete. This is because of the Law of Conservation of Mass. Mass is neither created nor destroyed in chemical reactions. You will have the exact number of molecules in the reaction vessel as you did in the beginning. The types of molecules may change, but the number will stay the same.
Answer:
E. Q < K and reaction shifts right
Explanation:
Step 1: Write the balanced equation
A(s) + 3 B(l) ⇄ 2(aq) + D(aq)
Step 2: Calculate the reaction quotient (Q)
The reaction quotient, as the equilibrium constant (K), only includes aqueous and gaseous species.
Q = [C]² × [D]
Q = 0.64² × 0.38
Q = 0.15
Step 3: Compare Q with K and determine in which direction will shift the reaction
Since Q < K, the reaction will shift to the right to attain the equilibrium.
Answer:
In a chemical equation, chemicals that react are the reactants, while chemicals that are produced are the products/by products. Both sides of the equation must be balanced.
\
Explanation
When writing a chemical equation, reactants reacts to produce products. For example in the equation for formation of water, hydrogen combines with oxygen as 2H₂ +O₂→2H₂O where the first part before the arrow represent the reactants and the next part after the arrow are the products. Reactants are on the left where as products are on the right.Coefficient 2, in this cases is used for balancing the equation
Sodium is very reactive but it’s a metal, and the problem asks specifically for a non-metal.
Silicone is technically reactive, but not super reactive.
Argon is a nonmetal, however it is an inert gas. It doesn’t react with anything.
We’re left with Chlorine, which is a non-metal in group 7, a highly reactive group, on the periodic table.