Answer:
Whales facilitate carbon absorption in two ways. On the one hand, their movements — especially when diving — tend to push nutrients from the bottom of the ocean to the surface, where they feed the phytoplankton and other marine flora that suck in carbon, as well as fish and other smaller animals.
Answer:
A physicist
Explanation:
Physics is that aspect of science that deals with nature and matter in relation to energy. Electricity is a source for energy
Answer:
Number of moles (n)=
molecular weight
weight
Weight=n×Molecular weight
=0.5×14
Mass=7g
Answer:
- <em>The solution that has the highest concentration of hydroxide ions is </em><u>d. pH = 12.59.</u>
Explanation:
You can solve this question using just some chemical facts:
- pH is a measure of acidity or alkalinity: the higher the pH the lower the acidity and the higher the alkalinity.
- The higher the concentration of hydroxide ions the lower the acidity or the higher the alkalinity of the solution, this is the higher the pH.
Hence, since you are asked to state the solution with the highest concentration of hydroxide ions, you just pick the highest pH. This is the option d, pH = 12.59.
These mathematical relations are used to find the exact concentrations of hydroxide ions:
- pH + pOH = 14 ⇒ pOH = 14 - pH
- pOH = - log [OH⁻] ⇒
![[OH^-]=10^{-pOH}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-pOH%7D)
Then, you can follow these calculations:
Solution pH pOH [OH⁻]
a. 3.21 14 - 3.21 = 10.79 antilogarithm of 10.79 = 1.6 × 10⁻¹¹
b. 7.00 14 - 7.00 = 7.00 antilogarithm of 7.00 = 10⁻⁷
c. 7.93 14 - 7.93 = 6.07 antilogarithm of 6.07 = 8.5 × 10⁻⁷
d. 12.59 14 - 12.59 = 1.41 antilogarithm of 1.41 = 0.039
e. 9.82 14 - 9.82 = 4.18 antilogarithm of 4.18 = 6.6 × 10⁻⁵
From which you see that the highest concentration of hydroxide ions is for pH = 12.59.
The Doppler effect doesn't just apply to sound. It works with all types of waves, which includes light. Edwin Hubble used the Doppler effect to determine that the universe is expanding. Hubble found that the light from distant galaxies was shifted toward lower frequencies, to the red end of the spectrum. This is known as a red Doppler shift, or a red-shift. If the galaxies were moving toward Hubble, the light would have been blue-shifted.