1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nika2105 [10]
2 years ago
11

StA

Physics
1 answer:
sweet-ann [11.9K]2 years ago
3 0

the Answer is 91  meters

You might be interested in
An archer shoots an arrow with a mass of 45.0 grams from bow pulled
Sladkaya [172]

Answer:

The force the archer need to pull in order to achieve the height is approximately 101.8 N

Explanation:

By energy conservation principle, puling an elastic bow with a force, for a given distance, performs work which is converted to the potential energy of the arrow at height

The given parameters are;

The mass of the arrow, m = 45.0 grams = 0.045 kg

The distance the elastic bow is pulled, d = 65.0 cm = 0.65 m

The height at which the arrow is reaches, h = 150.0 meters

Let 'F', represent the force the archer need to pull in order to achieve the height

Work done, W = Force × Distance moved in the direction of the force

Therefore;

The work done in pulling the arrow, W = F × d

By energy conservation, we have;

The work done in pulling the arrow, W = The potential energy gained by the arrow, P.E.

W = P.E.

The potential energy gained by the arrow, P.E. = m·g·h

Where;

m = The mass of the arrow

g = The acceleration due to gravity = 9.8 m/s²

h = The height the arrow reaches

∴ by plugging in the values, P.E. = 0.045 kg ×9.8 m/s² × 150 m = 66.15 J

W = F × d = F × 0.065 m

Also, W = P.E. = 66.15 J

∴ W = F × 0.065 m = 66.15 J

F × 0.065 m = 66.15 J

F = 66.15 J/(0.65 m) = 1323/13 N ≈ 101.8 N

The force the archer need to pull in order to achieve the height, F ≈ 101.8 N.

3 0
2 years ago
A very long string (linear density 0.7 kg/m ) is stretched with a tension of 70 N . One end of the string oscillates up and down
rewona [7]

To develop this problem it is necessary to apply the concepts related to Wavelength, The relationship between speed, voltage and linear density as well as frequency. By definition the speed as a function of the tension and the linear density is given by

V = \sqrt{\frac{T}{\rho}}

Where,

T = Tension

\rho = Linear density

Our data are given by

Tension , T = 70 N

Linear density , \rho = 0.7 kg/m

Amplitude , A = 7 cm = 0.07 m

Period , t = 0.35 s

Replacing our values,

V = \sqrt{\frac{T}{\rho}}

V = \sqrt{\frac{70}{0.7}

V = 10m/s

Speed can also be expressed as

V = \lambda f

Re-arrange to find \lambda

\lambda = \frac{V}{f}

Where,

f = Frequency,

Which is also described in function of the Period as,

f = \frac{1}{T}

f = \frac{1}{0.35}

f = 2.86 Hz

Therefore replacing to find \lambda

\lambda = \frac{10}{2.86}

\lambda = 3.49m

Therefore the wavelength of the waves created in the string is 3.49m

3 0
3 years ago
An LED is useful because when a current passes through it, it gives out... what?
Mkey [24]

An LED is useful because when a current passes through it, it gives out light.

4 0
2 years ago
What if the Earth was moved out to Jupiter's orbit which is about 5
Stels [109]

Answer:

25.0 less force

Explanation:

4 0
3 years ago
Which statement is NOT true?
Nuetrik [128]

Answer:

light doesn't need a medium through which to travel because the speed of light is experimentally constant

4 0
2 years ago
Other questions:
  • When the hydrogen atom makes the transition from the n=2 to the n=1 energy level, it emits a photon. This photon can be absorbed
    7·1 answer
  • If there are 50 grams of U-238 on day zero of radioactive decay, how much will there be after 4.5 billion years
    12·2 answers
  • Solve this.
    8·1 answer
  • The mass of a colony of bacteria, in grams, is modeled by the function P given by P(t)=2+5tan−1(t2), where t is measured in days
    5·1 answer
  • Alice drops a rock to a well. She hears the splash of the rock 4.1s later. The speed of sound is 340m/s. How deep is the well
    14·1 answer
  • A capacitor is connected to an ac generator that has a frequency of 3.0 kHz and produces a rms voltage of 2.0 V. The rms current
    14·1 answer
  • Which of the following is an example of a biotic factor depending on an abiotic factor?
    12·1 answer
  • Explain why muscles need more blood during exercise. Give three reasons.
    15·1 answer
  • According to Newton's law of motion, when we shake a mango tree, mangoes fall down explain.​
    15·1 answer
  • A ball is kicked at a speed of 16m/s at 33° and it eventually returns to ground level further down field.
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!