Explanation:
As it is given that solubility of water in diethyl ether is 1.468 %. This means that in 100 ml saturated solution water present is 1.468 ml.
Hence, amount of diethyl ether present will be calculated as follows.
(100ml - 1.468 ml)
= 98.532 ml
So, it means that 98.532 ml of diethyl ether can dissolve 1.468 ml of water.
Hence, 23 ml of diethyl ether can dissolve the amount of water will be calculated as follows.
Amount of water = 
= 0.3427 ml
Now, when magnesium dissolves in water then the reaction will be as follows.

Molar mass of Mg = 24.305 g
Molar mass of
= 18 g
Therefore, amount of magnesium present in 0.3427 ml of water is calculated as follows.
Amount of Mg =
= 0.462 g
Answer:
1.58x10⁻⁵
2.51x10⁻⁸
0.0126
63.10
Explanation:
Phenolphthalein acts like a weak acid, so in aqueous solution, it has an acid form HIn, and the conjugate base In-, and the pH of it can be calculated by the Handerson-Halsebach equation:
pH = pKa + log[In-]/[HIn]
pKa = -logKa, and Ka is the equilibrium constant of the dissociation of the acid. [X] is the concentrantion of X. Thus,
i) pH = 4.9
4.9 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = - 4.8
[In-]/[HIn] = 
[In-]/[HIn] = 1.58x10⁻⁵
ii) pH = 2.1
2.1 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = -7.6
[In-]/[HIn] = 
[In-]/[HIn] = 2.51x10⁻⁸
iii) pH = 7.8
7.8 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = -1.9
[In-]/[HIn] = 
[In-]/[HIn] = 0.0126
iv) pH = 11.5
11.5 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = 1.8
[In-]/[HIn] = 
[In-]/[HIn] = 63.10
Yea! what the person underneath me said
Answer:
When a molecule is excited to a higher state it often ends up in its lowest excited state S1 and then emits radiation.