Answer:
It is A).
Explanation:
Silver (Ag) goes from the pure metal to Ag+ losing 1 electron so it is oxidised.
The hydrogen ion gains electrons and is reduced.
Explanation:
The graphite anodes are suspended into the brine. During electrolysis, Cl ions are oxidized at the anode and chlorine gas goes out of the cell, while sodium ions are reduced at the mercury cathode forming sodium amalgam. ... Hydrogen gas is obtained as a by–product at the cathode.
Answer:
Doping with galium or indium will yield a p-type semiconductor while doping with arsenic, antimony or phosphorus will yield an n-type semiconductor.
Explanation:
Doping refers to improving the conductivity of a semiconductor by addition of impurities. A trivalent impurity leads to p-type semiconductor while a pentavalent impurity leads to an n-type semiconductor.
Answer:
A) involves changes in temperature
Explanation:
The figure is missing, but I assume that the region marked X represents the region in common between Gay-Lussac's law and Charle's Law.
Gay-Lussac's law states that:
"For an ideal gas kept at constant volume, the pressure of the gas is directly proportional to its absolute temperature"
Mathematically, it can be written as

where p is the pressure of the gas and T its absolute temperature.
Charle's Law states that:
"For an ideal gas kept at constant pressure, the volume of the gas is directly proportional to its absolute temperature"
Mathematically, it can be written as

where V is the volume of the gas and T its absolute temperature.
By looking at the two descriptions of the law, we see immediately that the property that they have in common is
A) involves changes in temperature
Since the temperature is NOT kept constant in the two laws.