You have to use the Henderson-Hasselbalch equation. Keep in mind that because the Pka is given the equation changes form slightly:
PH = Pka + log[acid/base]
Step 1 (Figure out the concentrations):
0.282 M of Acid (C6H5OOH) - 0.150 M = 0.132 M of acid
0.282 M of Base (C6HCOO) + 0.150 M = 0.432 M of bas3
Step 2 (Plug into equation):
PH = Pka + log[acid/base]
PH = 4.20 + log[0.132 M/0.432 M]
PH = 3.69
When sunlight hits the moon's surface, the temperature can reach 260 degrees Fahrenheit (127 degrees Celsius). When the sun goes down, temperatures can dip to minus 280 F (minus 173 C).
We have a solution of NaOH and H₂CO₃
First, NaOH will dissociate into Na⁺ and OH⁻ ions
The Na⁺ ion will substitute one of the Hydrogen atoms on H₂CO₃ to form NaHCO₃
The H⁺ released from the substitution will bond with the OH⁻ ion to form a water molecule
If there were to be another NaOH molecule, a similar substitution will take place, substituting the second hydrogen from H₂CO₃ as well to form Na₂CO₃