The low temperature outside lowers the volume of the gas according to Charles' law because this law describes how a gas will behave at constant pressure. It shows that the volume of a given mass of a gas is directly proportional to the absolute temperature provided the pressure remains constant. An increase in temperature leads to an increase in volume while a decrease reduces the volume. This is due to the reduction in the distances traveled by the vibrating particles of the gas because of the lost kinetic energy.
Answer:
The 3p orbitals have the same general shape and are larger than 2p orbitals, but they differ in the number of nodes. You have probably noticed that the total number of nodes in an orbital is equal to n−1 , where n is the principal quantum number. Thus, a 2p orbital has 1 node, and a 3p orbital has 2 nodes.
Answer: The 3rd and 6th bullet point is the quantitative data.
Explanation: Quantitative data is expressed by NUMBERS and Qualitative data is expressed by WORDS. The 3rd and 6th one is correct because they both use numbers to compare how much time hummingbirds spent feeding on nectar.
Answer:
439.7nm
Explanation:
Energy of a quantum can be calculated using below formula
E=hv...........eqn(1)
But v=λ/ c .........eqn(2)
If we substitute eqn(2) into eqn(1) we have
E= hc/(λ)
Where E= energy
h= Plank's constant= 6.62607004 × 10-34 m2 kg / s
c= speed of light
c= 2.998 × 10^8 m/s
λ= wavelength= ?
But the energy was given in Kj , it must be converted to Kj/ photon for unit consistency.
Energy E= 272 kJ/mol × 1mol/6.02× 10^23
Energy= 451.83× 10^-24 Kj/ photon
E= hc/(λ)...........eqn(1)
If we make λ subject of the formula
λ= hc/E
Then substitute the values we have
λ= [(6.626 × 10^-34) × (2.998 × 10^8)]/451.83× 10^-24
λ=(0.00043965) × (1Kj/1000J) × (10^9nm/1m)
λ=439.7nm
Hence, the longest wavelength of radiation with enough energy to break carbon-sulfur bonds is 439.7nm