Answer:
1
Explanation:
For non metals to attain a noble gas configuration, they gain the number of electrons needed to attain the noble gas configuration of the noble gas at the end of their periods. This means that these non metals would only take up the configuration of the last element on their periods which of course is always a noble gas.
The last element on the hydrogen period or more conservatively the only other element on the hydrogen period is helium, with an atomic number of 2. The atomic number is the number of protons in he nucleus of an atom. For an electrically neutral atom, the number of electrons equal the number of protons.
Hence we can deduce that helium has 2 electrons while hydrogen has one electron. Thus for it to attain the configuration of helium, it just needs to gain one more electron
Answer:

Explanation:
Hello,
In this case, since the chemical reaction is:

We can see that hydrochloric acid and magnesium hydroxide are in a 2:1 mole ratio, which means that the neutralization point, we can write:

In such a way, the moles of magnesium hydroxide (molar mass 58.3 g/mol) in 500 mg are:

Next, since the pH of hydrochloric acid is 1.25, the concentration of H⁺ as well as the acid (strong acid) is:
![[H^+]=[HCl]=10^{-pH}=10^{-1.25}=0.0562M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BHCl%5D%3D10%5E%7B-pH%7D%3D10%5E%7B-1.25%7D%3D0.0562M)
Then, since the concentration and the volume define the moles, we can write:
![[HCl]*V_{HCl}=2*n_{Mg(OH)_2}](https://tex.z-dn.net/?f=%5BHCl%5D%2AV_%7BHCl%7D%3D2%2An_%7BMg%28OH%29_2%7D)
Therefore, the neutralized volume turns out:

Best regards.
The two types of energy changes that occur are heat and light changes.
I believe it was decomposition reaction