The correct option is D.
The model developed by Ptolemy has a lot of inconsistency and during the middle age additional explanation was offered for the claims made by the model. The model was very complicated because it was based on erroneous assumptions.
Copernicus model was simpler and some of his claims were correct.<span />
Answer:
C. 110 m/s2
Explanation:
Force = Mass x Acceleration
Since we have the force and the mass, we can rearrange this equation to solve for acceleration by dividing both sides by mass:
Force/Mass = (Mass x Acceleration)/Mass
Acceleration = Force/Mass
Now we just have to plug in our values and calculate!
Acceleration = 48.4/0.44
Acceleration = 110m/s/s
It is option C. 110 m/s2
Hope this helped!
Answer:
Modern racism
Explanation:
Modern racism emanates from an aggressive prejudicial behavior to a more subtle prejudicial behavior. This subtle prejudicial behavior advanced to a degree that is much more difficult to see, yet is regarded as more severe. The modern form of racism is the workplace. Although many companies promise an equal opportunity, there is little doubt that everyone is treated equally within their place of work. Subtle, modern racism is believed to create an image that seems more politically correct. The politically correct way to discriminate is through a "polite" form of racism. In the past racism was easily defined and institutional
Modern racism is among the most widespread forms of verbally expressed negative racial attitudes in the United States .
Answer: I = 3.6 m3
(C)
Explanation:
moment of inertia for spherically shaped object around it's center is given as
I = (2/5) mr²
substituting the r = 3m²
I = (2/5)*(9) m3
I = 3.6 m3
Explanation:
The electric field is defined as the change in the properties of space caused by the existence of a positively (+) or negatively (-) charged particle. The electric field can be represented by infinitely many lines from a particle, and those lines never intersect each other. Depending on the type of charge we can see different cases:
- Let's say we have a <u>positive charge alone (</u>image 1)<u>.</u> The field lines are drawn from the centre of the particle outwards to infinity (in other words, they disappear from the edge of the picture). Meaning the direction of the electric field points outwards the particle.
- For a <u>negative charge alone </u>(image 2)<u>,</u> the lines come from infinity to the centre, and point towards the particle (i.e. lines appear from the edge of the picture).
Let's see what happens if we have two charges together:
- <u>Two positive charges</u> (image 3): Since the charges are of the same type (positive), the particles repel each other. Then the field lines will avoid each other so they do not join. The charge is positive, so lines point outwards.
- <u>Two negative charges</u> (image 4): Again, the charges are both negative, so they repel. But they are negative, so the field points inwards.
- <u>Negative and positive charges</u> (image 5): They are different charges, so the force between them is attractive. This causes the field lines from both to join. They go out of the positive and come into the negative particle.
Image 6:
The lines are passing through infinite points of the space. If we choose a certain point and measure the electric field, we can see to which direction the electric field points. This is the direction of the electric field vector. It does not matter which point we choose; the electric field vector touches the field line only at this point, which means it is tangent to the field line.