1. If we increase the distance to twice it's original value, the light intensity is reduced by one-fourth, the light intensity would be:
I0/4
2. rms magnetic field is inversely proportional to distance, so the new rms magnetic field would be:
B0/2
3. average energy density is inversely proportional to the square of the distance, so the new average energy density is:
E0/4
Answer:
v = 9.936 m/s
Explanation:
given,
height of cliff = 40 m
speed of sound = 343 m/s
assuming that time to reach the sound to the player = 3 s
now,
time taken to fall of ball


t = 2.857 s
distance
d = v x t
d = v x 2.875
time traveled by the sound before reaching the player



distance traveled by the wave in this time'
r = 0.143 x 343
r= 49.05 m
now,
we know.
d² + h² = r²
d² + 40² = 49.05²
d =28.387 m
v x 2.875=28.387 m
v = 9.936 m/s
Answer:
True.
Explanation:
According to Lenz's law, the induced current in a circuit always flows to oppose the external magnetic field through the circuit. This statement is true.
The Faraday's law of induction is given by :

Here, negative sign shows that the direction of induced emf is such that opposes the changing current that is its cause.
Hence, the statement is true.
Particles transfer energy physically from one to the other either horizontally in a longitudinal wave, vertically in a transverse wave, or in circles in a surface wave. Waves can also be electromagnetic, which are always transverse and do not require a medium to propagate, like light waves traveling through space.
D. Your mass and the mass of the planet