It means that they were set earlier therefor they are older.
Which of the following had have the highest viscosity ?
B) corn syrup bevause corn syrup is a mixture of 2 elements
Answer:
The horizontal component of the velocity is 21.9 m/s.
Explanation:
Please see the attached figure for a better understanding of the problem.
Notice that the vector v and its x and y-components (vx and vy) form a right triangle. Then, we can use trigonometry to find the magnitude of vx, the horizontal component of the velocity.
To find vx, let´s use the following trigonometric rule of right triangles:
cos α = adjacent / hypotenuse
cos 5.7° = vx / 22 m/s
22 m/s · cos 5.7° = vx
vx = 21.9 m/s
The horizontal component of the velocity is 21.9 m/s.
Answer:
a)5.88J
b)-5.88J
c)0.78m
d)0.24m
Explanation:
a) W by the block on spring is given by
W=
kx² =
(530)(0.149)² = 5.88 J
b) Workdone by the spring = - Workdone by the block = -5.88J
c) Taking x = 0 at the contact point we have U top = U bottom
So, mg
=
kx² - mgx
And,
= (
kx² - mgx
)/(mg) =
]/(0.645x9.8)
= 0.78m
d) Now, if the initial initial height of block is 3
= 3 x 0.78 = 2.34m
then,
kx² - mgx - mg
=0
(530)x² - [(0.645)(9.8)x] - [(0.645)(9.8)(2.34) = 0
265x² - 6.321x - 14.8 = 0
a=265
b=-6.321
c=-14.8
By using quadratic eq. formula, we'll have the roots
x= 0.24 or x=-0.225
Considering only positive root:
x= 0.24m (maximum compression of the spring)
Answer:
the final kinetic energy is 0.9eV
Explanation:
To find the kinetic energy of the electron just after the collision with hydrogen atoms you take into account that the energy of the electron in the hydrogen atoms are given by the expression:

you can assume that the shot electron excites the electron of the hydrogen atom to the first excited state, that is
![E_{n_2-n_1}=-13.6eV[\frac{1}{n_2^2}-\frac{1}{n_1^2}]\\\\E_{2-1}=-13.6eV[\frac{1}{2^2}-\frac{1}{1}]=-10.2eV](https://tex.z-dn.net/?f=E_%7Bn_2-n_1%7D%3D-13.6eV%5B%5Cfrac%7B1%7D%7Bn_2%5E2%7D-%5Cfrac%7B1%7D%7Bn_1%5E2%7D%5D%5C%5C%5C%5CE_%7B2-1%7D%3D-13.6eV%5B%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B1%7D%5D%3D-10.2eV)
-10.2eV is the energy that the shot electron losses in the excitation of the electron of the hydrogen atom. Hence, the final kinetic energy of the shot electron after it has given -10.2eV of its energy is:
