1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allochka39001 [22]
3 years ago
14

A body is moving along a circular path with variable speed, it has both radial and tangential acceleration.

Physics
1 answer:
belka [17]3 years ago
5 0

Answer:

True;   ar = v^2 / R      Radial acceleration because it moves in a circular path

    at = α R = tangential acceleration because its speed changes

a = at + ar    total acceleration equals sum of radial and tangential

You might be interested in
A 27.0-m steel wire and a 48.0-m copper wire are attached end to end and stretched to a tension of 145 N. Both wires have a radi
algol13

Answer:

The time taken by the wave to travel  along the combination of two wires is 458 ms.

Explanation:

Given that,

Length of steel wire= 27.0 m

Length of copper wire = 48.0 m

Tension = 145 N

Radius of both wires = 0.450 mm

Density of steel wire \rho_{s}= 7.86\times10^{3}\ kg/m^{3}

Density of copper wire \rho_{c}=8.92\times10^{3}\ kg/m^3

We need to calculate the linear density of steel wire

Using formula of linear density

\mu_{s}=\rho_{s}A

\mu_{s}=\rho_{s}\times\pi r^2

Put the value into the formula

\mu_{s}=7.86\times10^{3}\times\pi\times(0.450\times10^{-3})^2

\mu_{s}=5.00\times10^{-3}\ kg/m

We need to calculate the linear density of copper wire

Using formula of linear density

\mu_{c}=\rho_{s}A

\mu_{c}=\rho_{s}\times\pi r^2

Put the value into the formula

\mu_{c}=8.92\times10^{3}\times\pi\times(0.450\times10^{-3})^2

\mu_{c}=5.67\times10^{-3}\ kg/m

We need to calculate the velocity of the wave along the steel wire

Using formula of velocity

v_{s}=\sqrt{\dfrac{T}{\mu_{s}}}

v_{s}=\sqrt{\dfrac{145}{5.00\times10^{-3}}}

v_{s}=170.3\ m/s

We need to calculate the velocity of the wave along the steel wire

Using formula of velocity

v_{c}=\sqrt{\dfrac{T}{\mu_{c}}}

v_{c}=\sqrt{\dfrac{145}{5.67\times10^{-3}}}

v_{c}=159.9\ m/s

We need to calculate the time taken by the wave to travel  along the combination of two wires

t=t_{s}+t_{c}

t=\dfrac{l_{s}}{v_{s}}+\dfrac{l_{c}}{v_{c}}

Put the value into the formula

t=\dfrac{27.0}{170.3}+\dfrac{48.0}{159.9}

t=0.458\ sec

t=458\ ms

Hence, The time taken by the wave to travel  along the combination of two wires is 458 ms.

4 0
4 years ago
If six moles of hydrogen chloride (HCl) react with plenty of aluminum, how many moles of aluminum chloride (AlCl3) will the reac
AlexFokin [52]

Answer:

Two moles of aluminum chloride (AlCl_3) are produced when six miles of hydrogen Chloride (HCl) react with plenty of aluminum

Explanation:

6 Moles of HCl will only react with 2 moles of Al irrespective of the number of moles of each compound present. The reaction wiil take place in this ratio only. The products produced will be 2 moles of AlCl_3 and 3 moles of H_2 this ratio will also be constant.

So, six moles of hydrogen chloride (HCl) will react with plenty of aluminum to produce many 2 moles of aluminum chloride (AlCl_3).

5 0
3 years ago
Which part of the ear receives the signal from the eardrum?​
Aleksandr [31]

Answer:

Ossicles

Explanation:

Sound causes eardrums to vibrate. These vibrations are then passed on to the ossicles, which is made up of 3 small bones-- the malleus, incus, and stapes. The stapes are connected to the inner ear, specifically to the cochlea which transforms sound waves into electrical signals that are sent to the brain.

7 0
3 years ago
A small block of mass 20.0 grams is moving to the right on a horizontal frictionless surface with a speed of 0.68 m/s. The block
Usimov [2.4K]

Answer:

a) v'=-0.227\ m.s^{-1}

b) v=1.36\ m.s^{-1}

Explanation:

Given:

mass of the lighter block, m'=0.02\kg

velocity of the lighter block, u'=0.68\ m.s^{-1}

mass of the heavier block, m=0.04\ kg

velocity of the heavier block, u=0\ m.s^{-1}

a)

Using conservation of linear momentum:

m'.u'+m.u=m'.v'+m.v

where:

v'= final velocity of the lighter block

v= final velocity of the heavier block

m'.u'=m'.v'+m.v

m'(u'-v')=m.v ........................(1)

Since kinetic energy is conserved in elastic collision:

\frac{1}{2}m'.u'^2=\frac{1}{2}m'.v'^2+\frac{1}{2}m.v^2

m'(u'^2-v'^2)=m.v^2

m'(u'-v')(u'+v')= m.v^2

divide the above equation by eq. (1)

v=u'+v' .............................(2)

now we substitute the value of v from eq. (2) in eq. (1)

m'(u'-v')=m(u'+v')

\frac{m'+m}{m'-m} =\frac{u'}{v'}

\frac{0.02+0.04}{0.02-0.04} =\frac{0.68}{v'}

v'=-0.227\ m.s^{-1} (negative sign denotes that the direction is towards left)

b)

now we substitute the value of v' from eq. (2) in eq. (1)

m'(u'-v+u')=m.v

2m'.u'=(m-m')v

2\times 0.02\times 0.68=(0.04-0.02)\times v

v=1.36\ m.s^{-1}

6 0
3 years ago
Plz do all of it i will give brainlest and thanks to best answer<br> plz do it right
AlladinOne [14]
The answer is a rainforest I’m pretty sure
3 0
3 years ago
Read 2 more answers
Other questions:
  • Lighting from the sun travels through space to earths atmosphere.
    9·1 answer
  • A car moves at a speed of 40 miles per hour for half an hour and then at 60 miles per hour for two hours. What is the average sp
    5·1 answer
  • Please i need answer ASAP... Please guys
    6·1 answer
  • A marathon runner completes a 42.188–km course in 2 h, 36 min, and 12 s. there is an uncertainty of 23 m in the distance travele
    15·1 answer
  • A 5 kg brick is dropped from a height of 12m on a spring with a spring constant 8 kN/m. If the spring has unstretched length of
    15·1 answer
  • Who discovered the law of conservation of energy?
    11·2 answers
  • A object is placed between the focal point and the lens of a concave lens. Where will the image be formed?
    15·1 answer
  • Alessandro has committed to riding his bike to and from school when the weather is good. All week, he rides to school without an
    11·1 answer
  • A 1990 kg car moving at 20.0 m/s collides and locks together with a 1540 kg car at rest at a stop sign. Show that momentum is co
    14·1 answer
  • Distinguishing Types of Mirrors<br> Light is coming from the left; which is a concave mirror?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!