Answer:
period of oscillations is 0.695 second
Explanation:
given data
mass m = 0.350 kg
spring stretches x = 12 cm = 0.12 m
to find out
period of oscillations
solution
we know here that force
force = k × x .........1
so force = mg = 0.35 (9.8) = 3.43 N
3.43 = k × 0.12
k = 28.58 N/m
so period of oscillations is
period of oscillations = 2π ×
................2
put here value
period of oscillations = 2π ×
period of oscillations = 0.6953
so period of oscillations is 0.695 second
Answer:
Explanation:
E = σ/ε = (F/A) / (ΔL/L)
E = (mg/(πd²/4) / (ΔL/L)
E = (4mg/(πd²) / (ΔL/L)
E = 4Lmg/(πd²ΔL)
E = 4(30.0)(90)(9.8)/(π(0.01²)0.25)
E = 1.35 x 10⁹ Pa or 1.35 GPa
Answer:
Explanation:
Let the amplitude of individual wave be I and resultant amplitude be 1.703 I . Let the phase difference be Ф in terms of degree
From the formula of resultant vector
(1.703I)² = I² + I² + 2 I² cosФ
2.9 I² = 2I² + 2 I² cosФ
.9I² = 2 I² cosФ
cosФ = .9 / 2
= .45
Ф = 63.25 .
Answer:
1408.685 KN/C
Explanation:
Given:
R = 0.45 m
σ = 175 μC/m²
P is located a distance a = 0.75 m
k = 8.99*10^9
- The Electric Field Strength E of a uniformly solid disk of charge at distance a perpendicular to disk is given by:

part a)
Electric Field strength at point P: a = 0.75 m

part b)
Since, R >> a, we can approximate a / R = 0 ,
Hence, E simplified relation becomes:

E = σ / 2*e_o
part c)
Since, a >> R, we can approximate. that the uniform disc of charge becomes a single point charge:
Electric Field strength due to point charge is:
E = k*δ*pi*R^2 / a^2
Since, R << a, Surface area = δ*pi
Hence,
E = (k*δ*pi/a^2)