Answer is: the hydronium ion concentratio is 1.71×10⁻⁷ mol/dm³ and pH<6.76.
The Kw (the ionization constant of water) at 40°C is 2.94×10⁻¹⁴ mol²/dm⁶ or 2.94×10⁻¹⁴ M².
Kw = [H₃O⁺] · [OH⁻].
[H₃O⁺] = [OH⁻] = x.
Kw = x².
x = √Kw.
x = √2.94×10⁻¹⁴ M².
x = [H₃O⁺] = 1.71×10⁻⁷ M; concentration of hydronium ion.
pH = -log[H₃O⁺].
pH = -log(1.71×10⁻⁷ M).
pH = 6.76.
pH (potential of hydrogen) is a numeric scale used to specify the acidity or basicity an aqueous solution.
Roman numerals are used in naming ionic compounds when the metal cation forms more than one ion. The metals that form more than one ion are the transition metals, although not all of them do this.
SnBr2 - Tin(II) Bromide
Answer:
The answer to your question is 24.325
Explanation:
Data
Magnesium-24 Abundance = 78.70%
Magnesium-25 Abundance = 10.13%
Magnesium-26 Abundance = 11.17%
Process
1.- Convert the abundance to decimals
Magnesium-24 Abundance = 78.70/100 = 0.787
Magnesium-25 Abundance = 10.13/100 = 0.1013
Magnesium-26 Abundance = 11.17/100 = 0.1117
2.- Write an equation
Average atomic mass = (Atomic mass-1 x Abundance 1) + (Atomic mass 2 x
Abundance-2) + (Atomic mass 3 x Abundance 3)
3.- Substitution
Average atomic mass = (24 x 0.787) + (25 x 0.1013) + (26 x 0.1117)
4.- Simplification
Average atomic mass = 18.888 + 2.533 + 2.904
5.- Result
Average atomic mass = 24.325