Answer:
38,437.5
Explanation:
Density(d)= 102.5g/ml
Volume (v)=375ml
Mass(m) = ?
D =m/v
102.5= m/375
102.5*375=m
38,437.5=m
therefore Mass = 38,437.5g/ml.
When a relationship between two different things is shown in a fraction it is a ratio.
hope this helps :)
Hey there!
In a gas state, particles have lots of energy, so they move around very rapidly, hitting each other and flowing around, that's why you see them moving so freely. Because they have so much energy, the substance is likely to be harder, as it can obtain more thermal energy, or heat.
Hope this helps!
Answer:
An apple in free fall accelerates toward the Earth with a free fall acceleration, g. The force of the apple on the Earth also causes the Earth to accelerate toward the falling apple. By Newton's Third Law, the force of the Earth on the apple is exactly equal and opposite to the force of the apple on the Earth. By Newton,s Second law, the force of the Earth on the apple is equal to the mass of the apple times g , the accelerations due to gravity. And, the force of the the apple on the Earth is equal to the mass of the Earth times the acceleration of the Earth toward the apple. In conclusion, the magnitude of the forces are equal, or
F ( apple on the Earth) = F( the Earth on the apple) or
M( mass of the earth) x a( the acceleration of the earth toward the apple) = m(mass of the apple) x g( the acceleration of the apple toward the Earth) or
a = (m/M) g
Explanation:
Kepler's third law is used to determine the relationship between the orbital period of a planet and the radius of the planet.
The distance of the earth from the sun is
.
<h3>
What is Kepler's third law?</h3>
Kepler's Third Law states that the square of the orbital period of a planet is directly proportional to the cube of the radius of their orbits. It means that the period for a planet to orbit the Sun increases rapidly with the radius of its orbit.

Given that Mars’s orbital period T is 687 days, and Mars’s distance from the Sun R is 2.279 × 10^11 m.
By using Kepler's third law, this can be written as,


Substituting the values, we get the value of constant k for mars.


The value of constant k is the same for Earth as well, also we know that the orbital period for Earth is 365 days. So the R is calculated as given below.



Hence we can conclude that the distance of the earth from the sun is
.
To know more about Kepler's third law, follow the link given below.
brainly.com/question/7783290.