1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Diano4ka-milaya [45]
3 years ago
8

A car weighing 8000N is traveling at 45 m/s on a perfectly flat, frictionless road. If the driver slams on the brakes, how far w

ill thw car slide before it comes to a stop?
Physics
1 answer:
laila [671]3 years ago
3 0

Without friction, the car cannot stop...

You might be interested in
A uniform brick of length 21 m is placed over
Paha777 [63]

Answer:

15.75 m

Explanation:

First, let's look at the top brick by itself.  In order for it not to tip over the bottom brick, its center of gravity must be right at the edge of the bottom brick.  So the edge of the top brick must be 10.5 m from the edge of the bottom brick.

Now let's look at both bricks as a combined mass.  We know the total length of this combined brick is 10.5 m + 21 m = 31.5 m.  And we know that for it to not tip over the edge of the surface, its center of gravity must be at the edge.  So the edge of the combined brick must be 31.5 m / 2 = 15.75 m from the edge of the surface.

6 0
3 years ago
If you went to a planet that had the twice the radius as Earth, but the same mass, a 1 kg pineapple would have a weight of
kicyunya [14]

Use the law of universal gravitation, which says the force of gravitation between two bodies of mass <em>m</em>₁ and <em>m</em>₂ a distance <em>r</em> apart is

<em>F</em> = <em>G m</em>₁ <em>m</em>₂ / <em>r</em>²

where <em>G</em> = 6.67 x 10⁻¹¹ N m²/kg².

The Earth has a radius of about 6371 km = 6.371 x 10⁶ m (large enough for a pineapple on the surface of the earth to have an effective distance from the center of the Earth to be equal to this radius), and a mass of about 5.97 x 10²⁴ kg, so the force of gravitation between the pineapple and the Earth is

<em>F</em> = (6.67 x 10⁻¹¹ N m²/kg²) (1 kg) (5.97 x 10²⁴ kg) / (6.371 x 10⁶ m)²

<em>F</em> ≈ 9.81 N

Notice that this is roughly equal to the weight of the pineapple on Earth, (1 kg)<em>g</em>, where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity, so that [force of gravity] = [weight] on any given planet.

This means that on this new planet with twice the radius of Earth, the pineapple would have a weight of

<em>F</em> = <em>G m</em>₁ <em>m</em>₂ / (2<em>r</em>)² = 1/4 <em>G m</em>₁ <em>m</em>₂ / <em>r</em>²

i.e. 1/4 of the weight on Earth, which would be about 2.45 N.

7 0
3 years ago
PLEASE HELP! I'LL GIVE BRAINLEST​
melisa1 [442]

Answer:

Weight = 8.162 Newton.

Explanation:

Given the following data;

Mass = 2.2 kg

Acceleration due to gravity = 3.71 N/kg

To find the weight of the textbook;

Weight = mass * acceleration due to gravity

Weight = 2.2 * 3.71

Weight = 8.162 N

Therefore, the weight of the science textbook in mars is 8.162 Newton.

3 0
3 years ago
A projectile has an initial horizontal velocity of 15 meters per second and an initial vertical velocity of 25 meters per second
Artyom0805 [142]

Answer:

75 m

Explanation:

The horizontal motion of the projectile is a uniform motion with constant speed, since there are no forces acting along the horizontal direction (if we neglect air resistance), so the horizontal acceleration is zero.

The horizontal component of the velocity of the projectile is

v_x = 15 m/s

and it is constant during the motion;

the total time of flight is

t = 5 s

Therefore, we can apply the formula of the uniform motion to find the horizontal displacement of the projectile:

d= v_x t =(15 m/s)(5 s)=75 m

5 0
3 years ago
A cyclist going downhill is accelerating at 1.2 m/s2. If the final velocity of the cyclist is 16 m/s after 10 seconds, what is t
Blababa [14]

Answer:

Initial Velocity is 4 m/s

Explanation:

What is acceleration?

It is the change in velocity with respect to time, or the rate of change of velocity.

We can write this as:

a=\frac{\Delta v}{t}

Where

a is the acceleration

v is velocity

t is time

\Delta  is "change in"

For this problem , we are given

a = 1.2

t = 10

Putting into formula, we get:

a=\frac{\Delta v}{t}\\1.2=\frac{\Delta v}{10}\\\Delta v = 1.2*10\\\Delta v = 12

So, the change in velocity is 12 m/s

The change in velocity can also be written as:

\Delta v = Final  \ Velocity - Initial \ Velocity

It is given Final Velocity = 16, so we put it into formula and find Initial Velocity. Shown Below:

\Delta v = Final  \ Velocity - Initial \ Velocity\\12=16-Initial \ Velocity\\Initial \ Velocity = 16 - 12 = 4

hence,

Initial Velocity is 4 m/s

3 0
3 years ago
Read 2 more answers
Other questions:
  • Who developed radiometric dating? What age did he assign to the oldest rocks?
    11·1 answer
  • In a car how does an air bag minimize the force acting on a person during a collision
    6·2 answers
  • A cup of coffee sits on the dashboard of an automobile. Even though you hold the cup still, as the car goes around a sharp curve
    9·2 answers
  • A train departs from its station at a constant acceleration of 5m/s2. What is the speed of the train at the end of 20 seconds
    8·1 answer
  • How long does it take a car traveling at 50.7 mi/hr to travel to 655 miles?
    8·2 answers
  • How do you calculate final velocity
    14·2 answers
  • Which term below best matches this definition - a period in European history when many educated people stressed the importance o
    9·1 answer
  • According to the Law of Reflection, the angle of incidence the angle of reflection. O A. is greater than B. is less than C. equa
    9·1 answer
  • A car traveling at 26 m/s skids to a stop in 3 seconds. Determine the skidding distance of the car.
    5·1 answer
  • CAN SOMEONE PLS HELP ME ILL GIVE YOU BRAINLIEST!!!!
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!