Let the mass of the person be m. Total momentum is conserved (because the exterior forces on the system are balanced), especially the component in the vertical direction.
Given that,
Mass of gallon is M
Let man mass be m
Velocity of man is v
Let velocity if ballot be Vb
When the person begin to move we have
Conservation of momentum
mv + MVb=0
MVb=-mv
Vb= -(m/M) v
Given that the mass of man is less than mass of balloon. i.e. m<M
So, if m<M, then, m/M <1
Therefore, .
Vb= -(m/M) v
Vb< -v
This implies that the velocity of balloon is less than the velocity of man and if is also moving in opposite direction
So the man is moving upward, then the balloon is moving downward and it's velocity is less than the velocity of man,
The answer is C
Down with a speed less than v
The answer is in the attachment
<span>...........................................</span>
Answer:
a)
125.6 rad/s
b)
25.12 rad/s²
Explanation:
a)
t = time required by the fan to get up to final operating speed = 5 sec
w = final operating rotational speed = 1200 rpm
we know that :
1 revolution = 2π rad
1 min = 60 sec
w = 
w = 
w = 125.6 rad/s
b)
w₀ = initial angular speed = 0 rad/s
α = angular acceleration
using the equation
w = w₀ + α t
125.6 = 0 + α (5)
α = 25.12 rad/s²
The vector, the x-component and the y-component form a rectangle triangle where the vector is the hypothenuse and the x and y components are the two sides.
Calling

the angle between the vector and the horizontal direction (x), the two sides are related to

by

where vy and vx are the two components on the y- and x-axis. Using vx=10 and vy=3 we find

And so the angle is