Answer:
Part a)

Part b)

Part c)

Part d)

Explanation:
Part a)
For hanger we know that it will have tension force upwards while it has downwards its weight so we will have

so we have

Part b)
now for car that is rolling on the floor the net force is given as



Part c)
now we know that the cart and the hanger both are connected to each other
so they must have same acceleration
so we will have



Part d)
now we know that
M = 2.40 kg
m = 0.50 kg
so we will have


<span>Health problems that develop later</span>
Answer:
Capacitive Reactance is 4 times of resistance
Solution:
As per the question:
R = 
where
R = resistance

f = fixed frequency
Now,
For a parallel plate capacitor, capacitance, C:

where
x = separation between the parallel plates
Thus
C ∝ 
Now, if the distance reduces to one-third:
Capacitance becomes 3 times of the initial capacitace, i.e., x' = 3x, then C' = 3C and hence Current, I becomes 3I.
Also,

Also,
Z ∝ I
Therefore,




Solving the above eqn:

Answer:
Vertical distance= 3.3803ft
Explanation:
First with the speed of the ball and the distance traveled horizontally we can determine the flight time to reach the plate:
Velocity= (90 mi/h) × (1 mile/5280ft) = 475200ft/h
Distance= Velocity × time⇒ time= 60.5ft / (475200ft/h) = 0.00012731h
time= 0.00012731h × (3600s/h)= 0.458316s
With this time we can determine the distance traveled vertically taking into account that its initial vertical velocity is zero and its acceleration is that of gravity, 9.81m/s²:
Vertical distance= (1/2) × 9.81 (m/s²) × (0.458316s)²=1.0303m
Vertical distance= 1.0303m × (1ft/0.3048m) = 3.3803ft
This is the vertical distance traveled by the ball from the time it is thrown by the pitcher until it reaches the plate, regardless of air resistance.