Answer:
The answer to your question is given below.
Explanation:
Mechanical advantage (MA) = Load (L)/Effort (E)
MA = L/E
Velocity ratio (VR) = Distance moved by load (l) / Distance moved by effort (e)
VR = l/e
Efficiency = work done by machine (Wd) /work put into the machine (Wp) x 100
Efficiency = Wd/Wp x100
Recall:
Work = Force x distance
Therefore,
Work done by machine (wd) = load (L) x distance (l)
Wd = L x l
Work put into the machine (Wp) = effort (E) x distance (e)
Wp = E x e
Note: the load and effort are measured in Newton (N), while the distance is measured in metre (m)
Efficiency = Wd/Wp x100
Efficiency = (L x l) / (E x e) x 100
Rearrange
Efficiency = L/E ÷ l/e x 100
But:
MA = L/E
VR = l/e
Therefore,
Efficiency = L/E ÷ l/e x 100
Efficiency = MA ÷ VR x 100
Efficiency = MA / VR x 100
A. is the answer for this question
Answer:
454,320 joules
Explanation:
The work done on an object is equal to its change in kinetic energy: Change in KE = F × d.
Plug the values for F and d into the formula and solve:
Change in KE = 2,524 × 180
= 454,320 joules
The roller coaster gains 454,320 joules of energy from the work done on it by the chain.
Answer:
w=m(9.8 m/s^)
Explanation:
weight is equal to your mass times gravity
Answer:
A = 1.54 x 10⁻⁵ m² = 15.4 mm²
Explanation:
The resistance of a wire can be given by the following formula:
where,
A = smallest cross-sectional area = ?
ρ = resistivity of copper = 1.54 x 10⁻⁸ Ωm
= resistance per unit length of wire = 0.001 Ω/m
Therefore,
<u>A = 1.54 x 10⁻⁵ m² = 15.4 mm²</u>