The force exerted on the board by the karate master given the data is -4500 N
<h3>Data obtained from the question </h3>
- Initial velocity (u) = 10 m/s
- Final velocity (v) = 1 m/s
- Time (t) = 0.002 s
- Mass (m) = 1 Kg
- Force (F) = ?
<h3>How to determine the force</h3>
The force exerted can be obtained as illustrated below:
F = m(v - u) / t
F = 1 (1 - 10) / 0.002
F = (1 × -9) / 0.002
F = -4500 N
Learn more about momentum:
brainly.com/question/250648
#SPJ1
Answer:
6.9066 × 10⁻⁵ m
Explanation:
For constructive interference, the expression is:
Where, m = 1, 2, .....
d is the distance between the slits.
The formula can be written as:
....1
The location of the bright fringe is determined by :
Where, L is the distance between the slit and the screen.
For small angle ,
So,
Formula becomes:
Using 1, we get:

Thus, the distance between the central maximum is 3.00 cm
First bright fringe , m = 1 occur at 3.00 / 2 = 1.50 cm
Since,
1 cm = 0.01 m
y = 0.0150 m
Given L = 2.00 m
λ = 518 nm
Since, 1 nm = 10⁻⁹ m
So,
λ = 518 × 10⁻⁹ m
Applying the formula as:

<u>⇒ d, distance between the slits = 6.9066 × 10⁻⁵ m</u>
When the car moves and makes a sound that is louder that when the car is just sitting there
The correct statements are that the speed decreases as the distance decreases and speed increases as the distance increases for the same time.
Answer:
Option A and Option B.
Explanation:
Speed is defined as the ratio of distance covered to the time taken to cover that distance. So Speed = Distance/Time. In other words, we can also state that speed is directly proportional to the distance for a constant time. Thus, the speed will be decreasing as there is decrease in distance for the same time. As well as there will be increase in speed as the distance increases for the same time. So option A and option B are the true options. So if there is decrease in the distance due to direct proportionality the speed will also be decreasing. Similarly, if the distance increases, the speed will also be increasing.
If the runner is running in a circular track then yes when something or someone is moving in a circular motion at a constant speed they are indeed accelerating. They’re accelerating because the direction of the velocity vector is changing