Answer:
The new volume after the temperature reduced to -100 °C is 0.894 L
Explanation:
Step 1: Data given
Volume of nitrogen gas = 1.55 L
Temperature = 27.0 °C = 300 K
The temperature reduces to -100 °C = 173 K
The pressure stays constant
Step 2: Calculate the new volume
V1/T1 = V2/T2
⇒with V1 = the initial volume of the gas = 1.55 L
⇒with T1 = the initial temperature = 300 K
⇒with V2 = the new volume = TO BE DETERMINED
⇒with T2 = the reduced temperature = 173 K
1.55 L / 300 K = V2 / 173 K
V2 = (1.55L /300K) * 173 K
V2 = 0.894 L
The new volume after the temperature reduced to -100 °C is 0.894 L
A radioactive element has an unstable nucleus that emits particles in the form of alpha, beta, or gamma radiation. A stable element has a nucleus that does not emit such particles
Answer:
D Cobalt
Explanation:
The volume of the sphere is 40 -25 = 15 cm^3
Density = mass/volume = 133 gm / 15 cm^3 = 8.87 gm/cm^3
which corresponds to Cobalt from the chart
<u>Answer:</u> The volume of stock solution needed is 90 mL
<u>Explanation:</u>
To calculate the molarity of the diluted solution, we use the equation:

where,
are the molarity and volume of the stock sulfuric acid solution
are the molarity and volume of diluted sulfuric acid solution
We are given:

Putting values in above equation, we get:

Hence, the volume of stock solution needed is 90 mL
Answer:
a. 21.7824 g
b. 0.2362 g
c. 31.5273 g
Please see the answers in the picture attached below.
Explanation:
Please see the step-by-step solution in the picture attached below.
Hope this answer can help you. Have a nice day!