Here's link to the answer:
tinyurl.com/wpazsebu
I think ethers are being referred to in this questions since an ether is defined by having a oxygen atom that is directly bonded to carbons on both sides.
I hope this helps. Let me know if you any further questions or if you anything to be clarified.
Answer: A degenerate pressure will generate a large force to repel further compression.
Explanation: In the production of new stars from the core of old dying white dwarf stars, the inner parts of the star will experience contraction with the release of heat , as they contract, their atoms will be squeezed such that their electrons start to overlap, and because of the Pauli's exclusive principle which states that no two electrons can occupy same space, the electrons will begin to repel each other and an opposing pressure called degenerate pressure will create a force so that the electrons cannot continually be crushed or overlap. With the limit of contraction, the outer parts of the star will expand and be repelled releasing the old stars called nebula and creating space for the inner new stars to form.
First, We have to write the equation for neutralization:
Ba(OH)2 + 2HCl → BaCl2 + 2H2O
so, from the equation of neutralization, we can get the ratio between Ba(OH)2 and HCl. Ba(OH)2 : HCl = 1:2
- We have to get the no.of moles of Ba(OH)2 to do the neutralization as we have 25.9ml of 3.4 x 10^-3 M Ba(OH)2.
So no.of moles of Ba(OH)2 = (25.9ml/1000) * 3.4x10^-3 = 8.8 x 10^-5 mol
and when Ba(OH)2 : HCl = 1: 2
So the no.of moles of HCl = 2 * ( 8.8x10^-5) = 1.76 x 10^-4 mol
So when we have 1.76X10^-4 Mol in 16.6 ml (and we need to get it per liter)
∴ the molarity = no.of moles / mass weight
= (1.76 x 10^-4 / 16.6ml)* (1000ml/L) = 0.0106 M Hcl