weight less on moon than on earth.
high on lift off - G force
low in orbit.
zero at a point between earth and moon
Answer:
K = 0.076 J
Explanation:
The height of the target, h = 0.860 m
The mass of the steel ball, m = 0.0120 kg
Distance moved, d = 1.50 m
We need to find the kinetic energy (in joules) of the target ball just after it is struck. Let t is the time taken by the ball to reach the ground.

Put all the values,

The velocity of the ball is :

The kinetic energy of the ball is :

So, the required kinetic energy is 0.076 J.
Answer:
Explanation:
Given a parallel plate capacitor of
Area=A
Distance apart =d
Potential difference, =V
If the distance is reduce to d/2
What is p.d
We know that
Q=CV
Then,
V=Q/C
Then this shows that the voltage is inversely proportional to the capacitance
Therefore,
V∝1/C
So, VC=K
Now, the capacitance of a parallel plate capacitor is given as
C= εA/d
When the distance apart is d
Then,
C1=εA/d
When the distance is half d/2
C2= εA/(d/2)
C2= 2εA/d
Then, applying
VC=K
V1 is voltage of the full capacitor V1=V
V2 is the required voltage let say V'
Then,
V1C1=V2C2
V × εA/d=V' × 2εA/d
VεA/d = 2V'εA/d
Then the εA/d cancels on both sides and remains
V=2V'
Then, V'=V/2
The potential difference is half when the distance between the parallel plate capacitor was reduce to d/2
Answer:
Speed is a "scalar" quantity
(C) is the correct answer
An object could travel at 10 m/s to some point and then return to the origin at 10 m/s for an average speed of 10 m/s, however it's displacement over that time would be zero for a net velocity of zero.
The doppler effect is the increase or decrease in the frequency of sound, light, or other waves as the source and observer move toward or away from each other.