Answer:
Explanation:
On the Moon :----
1500 x 1.6 = 2400 m /s is initial velocity of bullet .
g = 1.6 m /s²
v = u - gt
0 = 2400 - 1.6 t
t = 1500 s
This is time of ascent
Time of decent will also be the same
Total time of flight = 2 x 1500 = 3000 s
On the Earth : ---
v = u - a₁ t
0 = u - a₁ x 18
u = 18a₁
v² = u² - 2 x a₁ x 2743.2
0 = (18a₁ )² - 2 x a₁ x 2743.2
a₁ = 16.93
For downward return
s = ut + 1/2 a₂ x t²
2743.2 = 0 + .5 x a₂ x 31²
a₂ = 5.7 m /s²
If d be the deceleration produced by air
g + d = 16.93 ( during upward journey )
g - d = 5.7
g = (16.93 + 5.7) / 2
= 11.315 m / s
d = 5.6 m /s²
So air is creating a deceleration of 5.6 m /s².
Answer:
The acceleration of the train is 5 m/s².
Explanation:
Given:
let the initial velocity of a train = 5 m/s and
final velocity of a train = 45 m/s
time taken = 8 s
To find:
acceleration: ?
Solution:
We define acceleration as change in velocity per unit time that is the difference between the final velocity and initial velocity divided by time.

On substituting the above values we get the required acceleration

Therefore,the acceleration of the train is 5 m/s².
Answer:
h = 618.64 m
Explanation:
First we need to calculate the height gained by rocket while the fuel is burning. We use 2nd equation of motion for that purpose:
h₁ = Vit + (1/2)at²
where,
h₁ = height gained during the burning of fuel
Vi = Initial Velocity = 0 m/s
t = time = 7 s
a = acceleration = 8 m/s²
Therefore,
h₁ = (0 m/s)(7 s) + (1/2)(8 m/s²)(7 s)²
h₁ = 196 m
Now we use 1st equation of motion to find final speed Vf:
Vf = Vi + at
Vf = 0 m/s + (8 m/s²)(7 s)
Vf = 56 m/s
Now, we calculate height covered in free fall motion. Using 3rd equation of motion:
2ah₂ = Vf² - Vi²
where,
a = - 3.71 m/s²
h₂ = height gained during free fall motion = ?
Vf = Final Velocity = 0 m/s (since, rocket will stop at highest point)
Vi = 56 m/s
Therefore,
(2)(-3.71 m/s²)h₂ = (0 m/s)² - (56 m/s)²
h₂ = 422.64 m
So the total height gained will be:
h = h₁ + h₂
h = 196 m + 422.64 m
<u>h = 618.64 m</u>
Answer:
1 , 2 and , 4 on usa test prep
Explanation: