Answer:
A) Emin = eV
B) Vo = (E_light - Φ) ÷ e
Explanation:
A)
Energy of electron is the product of electron charge and the applied potential difference.
The energy of an electron in this electric field with potential difference V will be eV. Since this is the least energy that the electron must reach to break out, then the minimum energy required by this electron will be;
Emin = eV
B)
The maximum stopping potential energy is eVo,
The energy of the electron due to the light is E_light.
If the minimum energy electron must posses is Φ, then the minimum energy electron must have to reach the detectors will be equal to the energy of the light minus the maximum stopping potential energy
Φ = E_light - eVo
Therefore,
eVo = E_light - Φ
Vo = (E_light - Φ) ÷ e
Define
v = volume of a drop per second, cm³/s
The time taken to fill 200 cm³ is 1 hour.
Let V = 200 cm³, the filled volume.
Let t = 1 h = 3600 s, the time required to fill the volume.
Therefore,

The average volume of a single drop is approximately 0.0556 cm³.
Answer: 0.0556 cm³
Answer:
The (s) indicates that the state of matter for NaHCO3 is solid.
Explanation:
When a chemical reaction is written, the state of matter for each components of the reactants and products are mentioned in brackets along with their names or formulas.
For example, NaHCO3 has (s) mentioned in the brackets. The s shows that the state of matter for NaHCO3. (l) represents liquid format. (g) represents that the state of matter is gas.