The magnitude of the magnetic field inside the solenoid is 3.4×10^(-4) T.
To find the answer, we need to know about the magnetic field inside the solenoid.
<h3>What's the expression of magnetic field inside a solenoid?</h3>
- Mathematically, the expression of magnetic field inside the solenoid= μ₀×n×I
- n = no. of turns per unit length and I = current through the solenoid
<h3>What's is the magnetic field inside the solenoid here?</h3>
- Here, n = 290/32cm or 290/0.32 = 906
I= 0.3 A
- So, Magnetic field= 4π×10^(-7)×906×0.3 = 3.4×10^(-4) T.
Thus, we can conclude that the magnitude of the magnetic field inside the solenoid is 3.4×10^(-4) T.
Learn more about the magnetic field inside the solenoid here:
brainly.com/question/22814970
#SPJ4
<span>d.rotating counterclockwise and slowing down
This is a matter of understanding the notation and conventions of angular rotations. Positive rotations are counter clockwise and negative rotations are clockwise. An easy way to remember this is the "right hand rule". Make a closed fist with your right hand and have the thumb sticking outwards. If you orient your thumb such that it's pointing in the direction of the positive value along the axis, your fingers will be curled in the positive rotational direction. So in the described scenario, the sphere is rotating in the positive direction (counter clockwise) and decelerating due to the negative angular acceleration. That immediately indicates that options "a", "b", and "e" are wrong since they mention the sphere going clockwise at the beginning. Of the two remaining options "c" and "d", we can discard option "c" since it has the rotation speeding up, and that leaves us with option "d" where the sphere is rotating counter clockwise and slowing down.</span>
Answer:
correct option is b. 31.3 m/s
Explanation:
given data
artificial gravity a1 = 1 g
artificial gravity a2 = 2 g
diameter = 100 m
radius r= 50 m
speed v1 = 22.1 m/s
solution
As acceleration is ∝ v²
so we can say
.....................1
put here value
solve it
v2 =
× 22.1
v2 = 31.25 m/s
so correct option is b. 31.3 m/s
Answer:
The battery can supply 130 W for 11.75 h
Explanation:
In order to discover the time in wich the battery can supply this energy we need to find how much current is being drawn from it, we do that by using the equation for real power that is P = V*I, since we have V and P we can solve for I as seen bellow:
I = P/V = 130/12 = 10.834 A
We can use this value to find how many hours the power can supply said current. We do that by dividing the current capacity of the battery by the current drawn:
t = 141/12 = 11.75 h
Answer:
8.91 J
Explanation:
mass, m = 8.20 kg
radius, r = 0.22 m
Moment of inertia of the shell, I = 2/3 mr^2
= 2/3 x 8.2 x 0.22 x 0.22 = 0.265 kgm^2
n = 6 revolutions
Angular displacement, θ = 6 x 2 x π = 37.68 rad
angular acceleration, α = 0.890 rad/s^2
initial angular velocity, ωo = 0 rad/s
Let the final angular velocity is ω.
Use third equation of motion
ω² = ωo² + 2αθ
ω² = 0 + 2 x 0.890 x 37.68
ω = 8.2 rad/s
Kinetic energy,

K = 0.5 x 0.265 x 8.2 x 8.2
K = 8.91 J