Friction is the force you get when you (for example) Rub something with another, it's a force that may generate heat and even some resistance. Another example is rubbing your hands together, they get hot, therefore friction is working, without friction you wouldn't be able to stop moving.
<span>The answer is C. temperature, light level, species of bacteria. All three variables are considerations regarding the reproduction rate of the bacteria. The other three answer choices can be eliminated easily because they each contain at least one irrelevant variable. In particular, all three contain a variable that makes reference to Jack's personal characteristics. These do not have any impact on the experiment and readily stand out to disqualify the entire answer choice.</span>
The reciprocal of the total resistance is equal to the sum of the reciprocals of the component resistances:
1/(120.7 Ω) = 1/<em>R₁</em> + 1/(221.0 Ω)
1/<em>R₁</em> = 1/(120.7 Ω) - 1/(221.0 Ω)
<em>R₁</em> = 1 / (1/(120.7 Ω) - 1/(221.0 Ω)) ≈ 265.9 Ω
Answer:
A constant value everywhere in the universe.
Explanation:
The speed of light in a vacuum is a constant value. It is not affected by change in frequency or wavelength of the light.
Mathematically the speed of light is given as:
c = λf
where λ = wavelength and f - frequency
The speed of light is the constant of proportionality between frequency and wavelength. In order words, wavelength and frequency are inversely proportional. As the wavelength increases, frequency decreases and vice versa.
While the change in wavelength and frequency of light affect the energy of the light, its speed is a constant value as long as the medium is a vacuum.
The speed of light is also not dependent on the manner with which the light wave is moving.
Which amplitude of the following longitudinal waves has the greatest energy?
amplitude = 10 cm; wavelength = 6 cm; period = 4 seconds