Answer:
The mass of Uranium present in a 1.2mg sample is 
Explanation:
The ration between Uranium mass and total sample mass is:
For a sample of mass 1.2 mg, the amount of uranium is:

We may be positive that an object is in mechanical equilibrium if it is not rotating and experiences no acceleration.
<h3>What is
mechanical equilibrium?</h3>
There are numerous other definitions for mechanical equilibrium that are all mathematically comparable in addition to the definition in terms of force. A system is in equilibrium in terms of momentum if the component motions are all constant. If velocity is constant, the system is in equilibrium in terms of velocity. When an item is in a state of rotational mechanical equilibrium, its angular momentum is preserved and its net torque is zero. More generally, equilibrium is reached in conservative systems at a configuration space location where the gradient of the potential energy concerning the generalized coordinates is zero.
To learn more about mechanical equilibrium, visit:
<u>brainly.com/question/14246949</u>
#SPJ4
No person shall be judged by their financial status in the process of applying for a job or position of power in the government.
Answer:
Explained
Explanation:
Michelson contrast is used for patterns where the distribution of bright and dark segments is nearly equal.
It is given by:

where I_max = maximum illumination and I_min = minimum illumination
we know that
typically, I_min = 54% of I_max (general standard)
or I_min = 0.54 I_max
putting this value in above equation to get m
this approximately corresponds to m = 0.3 or 30%
hence, 30% recommended as the minimum Michelson contrast
Moving a spring back and forth creates a longitudinal wave